Downloaded from pharmrev.aspetjournals.org by guest on June 15, 2012

International Union of Pharmacology. XIII. Classification of Histamine Receptors

S. J. HILL^a, C. R. GANELLIN, H. TIMMERMAN, J. C. SCHWARTZ, N. P. SHANKLEY, J. M. YOUNG, W. SCHUNACK, R. LEVI, AND H. L. HAAS

Department of Physiology and Pharmacology (S.J.H.), Medical School, Queen's Medical Centre, Nottingham, England; Department of Chemistry (C.R.G.), University College London, Christopher Ingold Laboratories, London, England; Department of Pharmacochemistry (H.T.), Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, Amsterdam, The Netherlands; Unité de Neurobiologie (J.C.S.),

Paris, France; James Black Foundation (N.P.S.), King's College School of Medicine and Dentistry, Dulwich, London, England; Department of Pharmacology (J.M.Y), University of Cambridge, Cambridge; Freie Universität Berlin (W.S.), Institut für Pharmazie I, Berlin (Dahlem), Germany; Department of Pharmacology (R.L.), Cornell University Medical College, New York; Department of Physiology (H.L.H.), Heinrich Heine University, Düsseldorf, Germany

I.	Introduction and historical perspective	253
II.	Histamine H ₁ -receptor	254
	A. Distribution and function	254
	B. H ₁ -selective ligands	256
	C. Receptor structure	257
	D. Signal transduction mechanisms	261
III.	Histamine H ₂ -receptor	263
	A. Distribution and function	
	B. H ₂ -selective ligands	264
	C. Receptor structure	265
	D. Signal transduction mechanisms	265
IV.	Histamine H_3 -receptor	267
	A. Distribution and function	267
	B. H_3 -receptor selective ligands	269
	C. Receptor structure	269
	D. Signal transduction mechanisms	269
V.	Other responses to histamine	270
	A. Potentiation of responses to N-methyl-D-aspartate	270
	B. A role as an intracellular messenger?	
VI.	References	270

I. Introduction and Historical Perspective

The classification of histamine receptors has to date been based on rigorous classical pharmacological analysis, and as yet, the classification of the three histamine receptors that have been defined by this process, (i.e., the H₁-, H₂-, and H₃-receptors) have not been added to because of more recent molecular biological approaches (Schwartz et al., 1991, 1995; Hill, 1990; Leurs et al., 1995b). The scant number of known histamine receptors, compared with the plethora of receptors for some other endogenous substances, probably reflects the relative neglect of histamine rather than a paucity of its receptors. There is some preliminary evidence of heterogeneity of the known histamine receptors (which will be reviewed later in this article), but the acceptance of additional subtypes still awaits the identification of "sequence differences" within a single species and the development of selective agonists and antagonists providing the structural, recognition, and transductional information necessary for reliable classification.

The first histamine receptor antagonists (popularly referred to as the classical antihistamines but now called H_1 -receptor antagonists) were synthesized (Bovet and Staub, 1936; Bovet, 1950) over 20 years after the discovery (Barger and Dale, 1910) and descriptions of some of the physiological effects (Dale and Laidlaw, 1910) of histamine. These accomplishments had been preceded, as for some other endogenous biogenic amines, by its synthesis as a chemical curiosity (Windaus and Vogt, 1907). Early studies of the antihistamines were qualitative, for example, the demonstration of their ef-

^a Address for correspondence: Professor S. J. Hill, Department of Physiology & Pharmacology, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.

fectiveness in protecting against bronchospasm produced in guinea pigs by anaphylaxis or administration of histamine (Bovet and Staub, 1936). Though qualitative, these studies yielded compounds, e.g., mepyramine (pyrilamine), that remain major ligands to define histamine receptors.

These antagonists were shown to reduce the effects of histamine on many tissues, notably vascular and extravascular smooth muscle (e.g., guinea pig ileum), but it became apparent that some of the effects of histamine were refractory to these classical antihistamines (Loew, 1947). For example, histamine-stimulated gastric secretion was shown to be unresponsive to three different antihistamines (Ashford et al., 1949). The vasodilator response to histamine in the cat was shown to be only partly sensitive to an antihistamine, leading to the suggestion that histamine causes vasodilatation by combining with more than one receptor (Folkow et al., 1948). The application of the method of Schild (Arunlakshana and Schild, 1959) to the classification of receptors revealed that the pA_2 ($-log K_B$) value of mepyramine for antagonism of the positive chronotropic effect of histamine on the right atrium of the guinea pig differed from mepyramine's pA₂ value for antagonism of the contractile response to histamine in guinea pig ileum, implying that the receptors involved were distinct (Arunlakshana and Schild, 1959; Trendelenburg, 1960). The histamine receptor in guinea pig ileum and in other tissues that showed the same or similar pA_2 value for these early antihistamines was then named the H₁-receptor (Ash and Schild, 1966). As the relative potencies of these histamine antagonists and histamine agonists on gastric acid secretion, relaxation of rat uterus, and chronotropy of the guinea pig right atrium differed from those on the H_1 -receptor, it was concluded that a separate histamine receptor was involved in these responses.

The development of specific antagonists (H₂-antagonists) for this novel receptor represents a classic example of rational drug design (Black et al., 1972; Black, 1989) and showed the "practical value" (Green and Maayani, 1987; Jenkinson, 1987) of a quantitative approach to the analysis of receptor antagonism (Arunlakshana and Schild, 1959). Burimamide was the first compound to be described (Black et al., 1972) that had a higher pA_2 for antagonism of the histamine-mediated responses on guinea pig atrium and rat uterus than the pA₂ determined for antagonism of the contractile response to histamine in guinea pig ileum. Burimamide was also able to reduce gastric acid secretion in dogs and humans and to reduce the blood pressure response of the cat to histamine (Black et al., 1972). A large number of more potent and selective H₂-receptor antagonists have since been developed (Cooper et al., 1990), although further quantitative investigations of the antagonist potency of burimamide on other histamine-mediated responses contributed to the definition and classification of the histamine H_3 -receptor (Arrang et al., 1983).


The third histamine receptor was also defined by a functional assay. Histamine was found to inhibit its own synthesis and release in rat cerebral cortical slices, and the effects of H_1 - and H_2 - receptor agonists and antagonists indicated a distinct receptor (Arrang et al., 1983, 1987b). A highly selective agonist, R-(α)-methylhistamine, and antagonist, thioperamide, clearly defined the H_3 -receptor (Arrang et al., 1987). Since that time, considerable efforts have been made to develop other H_3 -receptor–selective agonists and antagonists (Garbarg et al., 1992; Jansen et al., 1992; Van der Goot et al., 1992; Vollinga et al., 1994; Ganellin et al., 1995; Ligneau et al., 1995; Stark et al., 1996b,c).

Table 1 summarizes some of the operational characteristics used to define the nature of the histamine receptor involved in different tissue responses. Histamine derivatives are numbered according to the system given in figure 1 (Black and Ganellin, 1974).

II. Histamine H₁-Receptor

A. Distribution and Function

The study of the distribution of histamine H₁-receptors in different mammalian tissues has been greatly aided by the development of selective radioligands for this particular histamine receptor subtype. [³H]mepyramine was originally developed in 1977 (Hill et al., 1977) and since that time has been used successfully to detect H₁-receptors in a wide variety of tissues including: mammalian brain; smooth muscle from airways, gastrointestinal tract, genitourinary system, and the cardiovascular system; adrenal medulla; and endothelial cells and lymphocytes (Hill, 1990). In some tissues and cells, however, it is notable that [³H]mepyramine additionally binds to secondary non-H₁-receptor sites (Chang et al., 1979a; Hill and Young, 1980; Hadfield et al., 1983; Mitsuhashi and Payan, 1988; Arias-Montano and Young, 1993; Dickenson and Hill, 1994; Leurs et al., 1995b). In rat liver, in which [³H]mepyramine predominantly binds to a protein homologous with debrisoquine 4-hydroxylase cytochrome P450 (Fukui et al., 1990), quinine can be used to inhibit this nonspecific binding. This observation has led Liu et al. (1992) to suggest that quinine may be used to inhibit binding to other lower affinity sites. However, it is clear that not all secondary binding sites for [³H]mepyramine are sensitive to inhibition by quinine (Dickenson and Hill, 1994). Thus, in DDT₁MF-2 cells, a 38 to 40 kDa protein has been isolated, which binds H₁-receptor antagonists with K_D values in the micromolar range (Mitsuhashi and Payan, 1988, Mitsuhashi et al., 1989) but which is not sensitive to inhibition by quinine (Dickenson and Hill, 1994). Nevertheless, DDT₁MF-2 cells can be shown to additionally possess [3H]mepyramine binding sites that have the characteristics of H₁-receptors (i.e., K_D values in the nanomolar range) and to mediate functional responses, which are clearly produced by histamine H₁-receptor

PHARMACOLOGICAL REVIEW

 TABLE 1

 Operational characteristics of histamine receptors

Receptor	Location	Response	Agonists	Antagonists
Histamine H ₁	Most smooth muscle, endothelial cells, adrenal medulla, heart, CNS	Smooth muscle contraction, stimulation of NO formation, endothelial cell contraction, increased vascular permeability, stimulation of hormone release, negative inotropism, depolarization (block of leak potassium current) and increased neuronal firing, inositol phospholipid hydrolysis and calcium mobilization, hyperpolarization by Ca ²⁺ -dependent potassium current	Histamine ^a 2-[3-(Trifluoromethyl)- phenyl]histamine 2-Thiazolylethylamine 2-Pyridylethylamine 2-Methylhistamine	Mepyramine (+) and (-) Chlorpheniramine Triprolidine Temelastine Diphenhydramine Promethazine
Histamine H_2	Gastric parietal cells, vascular smooth muscle, suppressor T cells, neutrophils, CNS, heart, uterus (rat)	Stimulation of gastric acid secretion, smooth muscle relaxation, stimulation of adenylyl cyclase, positive chronotropic and inotropic effects on cardiac muscle, decreased firing rate, hyperpolarization or facilitation of signal transduction in CNS, block of Ca ²⁺ -dependent potassium conductance (I AHP, accommodation of firing, after- hyperpolarization), increase of hyperpolarization-activated current, inhibition of lymphocyte function	Histamine ^a Amthamine Dimaprit Impromidine ^b Arpromidine ^b	Cimetidine Ranitidine Tiotidine Zolantidine Famotidine
Histamine H_3	CNS, peripheral nerves (heart, lung, gastrointestinal tract), endothelium, enterochromaffin cells	Inhibition of neurotransmitter release, endothelium-dependent relaxation of rabbit middle cerebral artery, inhibition of gastric acid secretion (dog), increase in smooth muscle voltage-dependent Ca^{2+} current, inhibition of firing of tuberomammilary (histaminergic) neurons	Histamine ^a R-α-methylhistamine Imetit Immepip N ^α -methylhistamine ^a	Thioperamide Clobenpropit Iodophenpropit Iodoproxyfan

CNS, central nervous system.

^a Nonselective.

 $^{\rm b}H_3$ -antagonist.

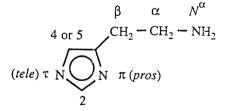


FIG. 1. Numbering for histamine derivatives.

activation (Dickenson and Hill, 1992; White et al., 1993; Dickenson and Hill, 1994).

Other radioligands that have been used to study histamine H_1 -receptors are [³H]mianserin (Peroutka and Snyder, 1981), [³H]doxepin (Tran et al., 1981; Kamba and Richelson, 1984; Taylor and Richelson, 1982), [¹²⁵I]iodobolpyramine (Bouthenet et al., 1988), [¹²⁵I]iodoazidophenpyramine (Ruat et al., 1988), and [³H](+)-N-methyl-4methyldiphenhydramine (Treherne and Young, 1988b). [¹²⁵I]Iodobolpyramine has been used for autoradiographic localization of H_1 -receptors in guinea pig brain, although less success has been achieved in rat brain (Körner et al., 1986; Bouthenet et al., 1988). The very slow dissociation of $[{}^{3}\text{H}]$ mepyramine from H₁-receptors at low temperatures (e.g., 4°C) does, however, mean that this ligand can also be used for autoradiography (Palacios et al., 1981a,b; Rotter and Frostholm, 1986). $[{}^{125}\text{I}]$ Iodoazidophenpyramine is a very potent H₁-receptor antagonist that can bind irreversibly to H₁-receptors following irradiation with ultraviolet light (Ruat et al., 1988). $[{}^{11}\text{C}]$ Mepyramine and $[{}^{11}\text{C}]$ doxepin have also proved useful for imaging histamine H₁-receptors in the living human brain (Villemagne et al., 1991; Yanai et al., 1992, 1995).

 H_1 -receptors have been extensively studied in blood vessels (Barger and Dale, 1910; Dale and Laidlaw, 1910; Folkow et al., 1948; Black et al., 1972) and other smooth muscle preparations (Ash and Schild, 1966; Black et al., 1972; Marshall, 1955; Hill, 1990). In smooth muscles, such as the guinea pig ileum, which freely generate muscle action potentials, modulation of action-potential discharge by low concentrations of histamine is an important mechanism by which tension is increased (Bolton, 1979; Bolton et al., 1981; Bülbring and Burnstock, 1960). In guinea pig ileum, there is also evidence Downloaded from pharmrev.aspetjournals.org by guest on June 15, 2012

Bspet

Aspet

that a component of the contractile response to histamine is mediated by inositol 1,4,5-trisphosphate-induced mobilization of intracellular calcium (Morel et al., 1987; Bolton and Lim, 1989; Donaldson and Hill, 1986b). In nonexcitable smooth muscles, such as airway and vascular smooth muscle, contractile responses to H₁-receptor stimulation primarily involve mobilization of calcium from intracellular stores as a consequence of inositol phospholipid hydrolysis (Matsumoto et al., 1986; Kotlikoff et al., 1987; Takuwa et al., 1987; Hall and Hill, 1988; Paniettieri et al., 1989; Van Amsterdam et al., 1989).

In vascular endothelial cells, H_1 -receptor stimulation leads to several cellular responses including: (a) changes in vascular permeability (particularly in postcapillary venules) as a result of endothelial cell contraction (Maino and Palade, 1961; Majno et al., 1968; Meyrick and Brigham, 1983; Grega, 1986; Killackey et al., 1986; Svensio and Grega. 1986): (b) prostacyclin synthesis (McIntyre et al., 1985; Brotherton, 1986; Carter et al., 1988; Resink et al., 1987); (c) synthesis of platelet-activating factor (McIntyre et al., 1985); (d) release of Von Willebrand factor (Hamilton and Sims, 1987); and (e) release of nitric oxide (Van De Voorde and Leusen, 1993; Toda, 1984). The H₁-receptor has also been characterized on human T lymphocytes using [¹²⁵I]iodobolpyramine (Villemain et al., 1990) and shown to increase [Ca²⁺]; (Kitamura et al., 1996).

Histamine H₁-receptors have long been established to be present in the adrenal medulla and to elicit the release of catecholamines (Emmelin and Muren, 1949; Staszewska-Barczak and Vane, 1965; Robinson, 1982; Livett and Marley, 1986; Noble et al., 1988). Thus, histamine can induce the release of both adrenaline and noradrenaline from cultured bovine adrenal chromaffin cells (Livett and Marley, 1986). In these cells, histamine can also stimulate phosphorylation of the catecholamine biosynthesis enzyme tyrosine hydroxylase via a mechanism that involves release of intracellular calcium (Bunn et al., 1995). In addition to its effects on catecholamine synthesis and release from adrenal chromaffin cells, histamine can also elicit the release of leucine- and methionine-enkephalin (Bommer et al., 1987). Furthermore, after prolonged exposure to histamine, there is a marked increase in messenger ribonucleic acid-encoding proenkephalin A (Bommer et al., 1987; Kley, 1988; Wan et al., 1989).

In human atrial myocardium and guinea pig ventricle, histamine produces negative inotropic effects (Guo et al., 1984; Genovese et al., 1988; Zavecz and Levi, 1978). In human myocardium, this response is associated with inhibitory effects on heart rate and can be unmasked when the positive effects of histamine on the rate and force of contraction (mediated via H_2 -receptors) are attenuated by conjoint administration of adenosine or adenosine A_1 -receptor agonists (Genovese et al., 1988). However, in guinea pig left atria (Reinhardt et al., 1974, 1977; Steinberg and Holland, 1975; Hattori et al., 1983, 1988a) and rabbit papillary muscle (Hattori et al., 1988b), histamine produces a positive inotropic response via a mechanism that is not associated with a rise in adenosine 3c,5c-cyclic monophosphate (cAMP^b) levels (see Hill, 1990).

Histamine H₁-receptors are widely distributed in mammalian brain (Hill, 1990; Schwartz et al., 1991). In human brain, higher densities of H1-receptors are found in neocortex, hippocampus, nucleus accumbens, thalamus, and posterior hypothalamus, whereas cerebellum and basal ganglia show lower densities (Chang et al., 1979b; Kamba and Richelson, 1984; Martinez-Mir et al., 1990: Villemagne et al., 1991: Yanai et al., 1992). The distributions in rat (Palacios et al., 1981a) and guinea pig (Palacios et al., 1981b; Bouthenet et al., 1988) are similar to each other and to humans with the exception that the guinea pig cerebellum shows high density (Ruat and Schwartz, 1989; Chang et al., 1979b; Hill and Young, 1980; Palacios et al., 1981b; Bouthenet et al., 1988). In most brain areas, there was overlap of H_1 receptor binding sites and messenger ribonucleic acid levels except in hippocampus and cerebellum in which the discrepancy is likely to reflect the presence of abundant H₁-receptors in dendrites of pyramidal and Purkinje cells, respectively (Traiffort et al., 1994). Histamine H₁-receptor activation causes inhibition of firing and hyperpolarization in hippocampal neurons (Haas. 1981) and an apamine-sensitive outward current in olfactory bulb interneurons (Jahn et al., 1995), effects most likely produced by intracellular Ca²⁺ release. However, many other notably vegetative ganglia (Christian et al., 1989), hypothalamic supraoptic (Haas et al., 1975), brainstem (Gerber et al., 1990; Khateb et al., 1990), thalamic (McCormick and Williamson, 1991), and human cortical neurons (Reiner and Kamondi, 1994) are excited by histamine H₁-receptor activation through a block of a potassium conductance.

B. H_1 -Selective Ligands

Although a large number of compounds have been synthesized as selective and competitive antagonists of the histamine H₁-receptor (see for example Casy, 1977; Ganellin, 1982), chemical effort directed at the generation of highly potent and selective H₁-receptor agonists has not achieved the same success. Modification of the ethylamine side chain of histamine is not favorable for H₁-receptor agonism (Leurs et al., 1995b). Furthermore, resolution of the enantiomers of the chiral compounds generated by methylation of the α - or β -positions did not reveal any stereoselectivity of the side chain for the H₁-receptor (Arrang et al., 1987; Leurs et al., 1995). Alkylation of the side chain amine group does not dras-

^b Abbreviations: cAMP, cyclic adenosine 3c,5c-cyclic monophosphate; cNDA, complementary deoxyribonucleic acid; CNS, central nervous system; DPPE, N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine; GTP γ S, guanosine 5'O-(3-thiotriphosphate); NMDA, N-methyl-D-aspartate; TM, transmembrane.

Bspet

tically reduce H₁-receptor activity, but N^{α}- and N^{α},N^{α}dimethylhistamine are also potent agonists for the H_3 receptor (table 2; fig. 2; Arrang et al., 1983). Modification of the imidazole moiety of histamine has been the most successful approach for obtaining agonists with selectivity for the H₁-receptor. Replacement of the imidazole moiety of histamine by other aromatic heterocyclic ring structures in 2-pyridylethylamine and 2-thiazolylethylamine yields two compounds with selectivity for the H_1 -receptor (table 2; fig. 2). Both compounds act as full agonists in producing contraction of guinea pig ileum (Donaldson and Hill, 1986c), but in other tissues (e.g., guinea pig cerebral cortical slices or DDT₁MF-2 cells), 2-pyridylethylamine behaves as a low-efficacy agonist (Donaldson and Hill, 1986a; White et al., 1993). Substitutions in the 2-position of the imidazole ring of histamine have produced compounds that are the most selective H_1 -agonists available (Zingel et al., 1995). Thus, 2(3-bromophenyl)histamine and 2[3-(trifluoromethyl)phenyl]histamine are both relatively potent and highly selective H₁-agonists (table 2; fig. 2; Leschke et al., 1995). Both compounds appear to be potent H_1 -agonists in guinea pig ileum (Leschke et al., 1995), although some of the halogenated 2-phenylhistamines are low-efficacy agonists in DDT₁MF-2 cells (Zingel et al., 1990; White et

TABLE 2Agonist potency ratios of histamine receptors

• • •		-	
Histamine	$\begin{array}{c} H_1 \\ 100 \end{array}$	$\substack{\mathrm{H}_2\\100}$	H_3 100
2-(3-(Trifluoromethyl)phenyl)-	128^{a}	$< 0.1^{\mathrm{a}}$	n.d.
histamine			
2-(3-Bromophenyl)histamine	112 ^a	$< 0.1^{\mathrm{a}}$	n.d.
N^{α} -methylhistamine	$72^{\rm b}$	$74^{\rm c}$	$270^{\rm d}$
2-(2-Thiazolyl)ethylamine	$26^{\rm b}$	2.2^{b}	${<}0.008^{ m d}$
2-Methylhistamine	17°	$4^{\rm c}$	$< 0.08^{d}$
2-(2-Pyridyl)ethylamine	5.6^{b}	2.5^{b}	n.d.
Arpromidine	Antagonist ^e	$10,230^{e}$	
Impromidine	Antagonist ^f	$4,810^{f}$	Antagonist ^{d,o}
Sopromidine	2^{g}	740^{g}	Antagonist ^{h,p}
Amthamine	1^{i}	150^{i}	0.002^{i}
Dimaprit	$< 0.0001^{j}$	71^{j}	$Antagonist^{d,q}$
4-Methylhistamine	$0.2^{\rm c}$	$43^{\rm c}$	$< 0.008^{d}$
Imetit	$< 0.1^{k}$	0.6^{k}	6200^{k}
Immepip	n.d.	n.d.	2457^1
$R-\alpha$ -methylhistamine	0.5^{m}	$1^{\rm m}$	1550^{m}
$S-\alpha$ -methylhistamine	0.5^{b}	1.7^{b}	$13^{\rm m}$
R- α ,S- β -dimethylhistamine	0.07^{n}	0.1^n	1800 ⁿ

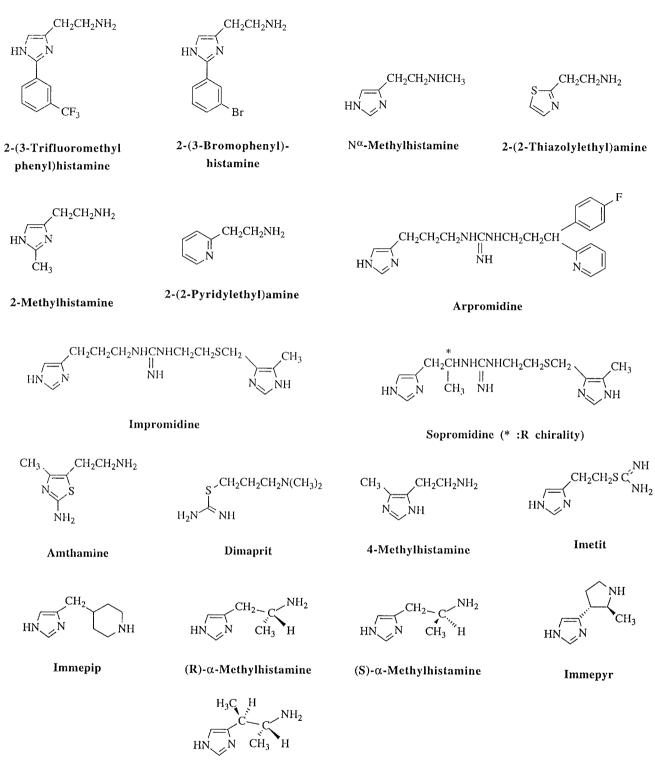
Values determined from guinea pig ileum contraction (H_1) , guinea pig atrium (chronotropic stimulation, H_2), and inhibition of K^+ -stimulated histamine release from rat cerebral cortical slices (H_3) , or inhibition of electrically stimulated contraction of guinea pig ileum (H_3) . n.d., not determined.

 $\label{eq:alpha} \begin{array}{ll} ^{a} \text{Leschke et al. (1995)} & ^{g} \text{Elz et al. (1989)} & ^{m} \text{Arrang et al. (1987)} \\ ^{b} \text{Ganelin (1982)} & ^{h} \text{Arrang et al. (1985c)} & ^{n} \text{Lipp et al. (1992)} \\ ^{c} \text{Black et al. (1972)} & ^{i} \text{Eriks et al. (1992)} & ^{o} \text{See table 4.} \end{array}$

^d Arang et al. (1983) j Durant et al. (1977) p K_B = 56 nM.

^e Sellier et al. (1992) ^k Garbarg et al. (1992) ^q $K_B = 3 \mu M$.

^f Durant et al. (1978) ^l Vollinga et al. (1994)


al., 1993) and in guinea pig aorta (Leschke et al., 1995) and can exhibit partial agonist properties.

Mepyramine (also known as pyrilamine) is the reference selective and high-affinity H₁-receptor antagonist (table 3; Hill, 1990). Other classical H₁-antagonists that have been used for characterization purposes include chlorpheniramine, tripelennamine, promethazine, and diphenhydramine (fig. 3). Some of these, however, possess marked muscarinic receptor antagonist properties (Hill, 1990, 1987), and consequently the selectivity of these compounds between the three different histamine receptors (table 3) does not guarantee an unambiguous characterization. This can only be achieved by appropriate quantitative assessment of receptor antagonism, preferably with a range of compounds of very different chemical structure. The stereoisomers of chlorpheniramine are particularly useful in this regard (table 3). The enantiomers of 4-methyl-diphenhydramine and brompheniramine also differ by two orders of magnitude in their affinity for the H_1 -receptor (Chang et al., 1979b; Treherne and Young, 1988b). The geometric isomer trans-triprolidine is three orders of magnitude more potent than its cis counterpart and is one of the most potent H₁-antagonists available for the guinea pig H₁receptor (tables 3 and 4; Ison et al., 1973). The tricyclic antidepressants amitriptyline and doxepin are also very potent H₁-receptor antagonists (K_D 0.6 and 0.1 nM respectively; Figge et al., 1979; Aceves et al., 1985).

At therapeutic dosages, many of the classical H₁-antihistamines give rise to sedative side effects that have been attributed to occupancy of H₁-receptors in the central nervous system (CNS) (Schwartz et al., 1981; Nicholson et al., 1991; Leurs et al., 1995b). Most of the classical H₁-antihistamines, including promethazine and (+)-chlorpheniramine, readily cross the blood-brain barrier. However, several compounds that penetrate poorly into the CNS and appear to be devoid of central depressant effects are now available (fig. 4). These include terfenadine (Rose et al., 1982; Wiech and Martin, 1982), astemizole (Laduron et al., 1982; Niemegeers et al., 1982), meguitazine (Uzan and Le Fer, 1979), loratadine (Ahn and Barnett, 1986), acrivastine (Leighton et al., 1983; Cohen et al., 1985), cetirizine (Timmerman, 1992b), and temelastine (Brown et al., 1986; Calcutt et al., 1987). The pK_i values for these agents are given in table 5 (Ter Laak et al., 1994).

C. Receptor Structure

Photoaffinity binding studies using [125 I]iodoazidophenpyramine and subsequent sodium dodecyl sulfatepolyacrylamide gel electrophoresis analysis have indicated that the H₁-receptor protein has a molecular weight of 56 kDa under reducing conditions in rat, guinea pig, and mouse brain (Ruat et al., 1988, 1990b; Ruat and Schwartz, 1989). Similarly, studies in bovine adrenal medullar membranes with another photoaffinity ligand [3 H]azidobenzamide (Yamashita et al., 1991b)

 $(R\alpha, S\beta)$ - α,β -Dimethylhistamine

FIG. 2. Histamine receptor agonists (H₁, H₂, and H₃).

found labeled peptides in the size range 53 to 58 kDa. Interestingly, the specifically labeled H_1 -receptor (with [¹²⁵I]iodoazidophenpyramine) in guinea pig heart was found to have a substantially higher molecular weight, although there is no obvious difference in the pharma-

cological characteristics of the H_1 -receptor in this tissue (Ruat et al., 1990a).

The bovine adrenal medulla H_1 -receptor was cloned in 1991 by expression cloning in the *Xenopus* oocyte system (Yamashita et al., 1991a). The deduced amino acid se-

REVIEW

PHARMACOLOGICA

Antagonist dissociation constants at histamine receptors	TABLE 3
	Antagonist dissociation constants at histamine receptors

			coprore
		$\rm K_{B}$ values	
	\mathbf{H}_{1}	H_3	${\rm H}_2$
Doxepin	$0.06 \ nM^{\rm a}$	n.d.	n.d.
Triprolidine (trans)	0.1 nM^{b}	n.d.	n.d.
Temelastine	0.3 nM^{c}	$> 10 \; \mu { m M^c}$	n.d.
Mepyramine (pyrilamine)	0.4 nM^{d}	$5.2 \ \mu M^e$	$>1~\mu\mathrm{M}^\mathrm{f}$
(+)-Chlorpheniramine	$0.4 \text{ nM}^{\text{g}}$	$1.2~\mu\mathrm{M}^\mathrm{h}$	$>58~{ m nM^i}$
(-)-Chlorpheniramine	$204 \text{ nM}^{\text{g}}$	$1.2~\mu\mathrm{M}^\mathrm{h}$	$>58~{ m nM^i}$
Diphenhydramine	1.0 nM^{j}	n.d.	n.d.
Promethazine	$1.2 \text{ nM}^{\text{k}}$	$3.0 \ \mu M^1$	n.d.
Chlorpromazine	$1.2 \text{ nM}^{\text{k}}$	$5.9 \ \mu M^1$	n.d.
Tripelenamine	3.2 nM^{d}	n.d.	n.d.
Arpromidine	$20 \ nM^m$	$ m agonist^{ah}$	
Cimetidine	450 Mn		00 Wi
	$450 \ \mu M^n$	800 nM ⁿ	$33 \ \mu M^{i}$
Metiamide	n.d.	920 nM°	$2.5 \ \mu M^{j}$
Ranitidine	$>100 \ \mu M^p$	200 nM ^p	$>1.2 \ \mu M^{i}$
Famotidine	n.d.	17 nM ^q	n.d.
Zolantidine	$6.2 \ \mu M^r$	25 nM ^r	$>10 \ \mu M^s$
Mifentidine	$>24 \ \mu M^t$	24 nM ^t	100 nM ^s
Tiotidine	$>30 \ \mu M^u$	15 nM ^v	$>12 \ \mu M^{i}$
Iodoaminopotentidine	$1.1 \ \mu M^w$	$2.5 \text{ nM}^{\text{w}}$	n.d.
Impromidine	3.4 μM ^x	agonist ^x	65 nM ⁱ
Burimamide	$320 \ \mu M^{y}$	$7.8 \ \mu M^z$	70 nM^{i}
Thioperamide	$>100~\mu\mathrm{M}^\mathrm{aa}$	$>10~\mu\mathrm{M}^\mathrm{aa}$	4 nM ^{aa}
Iodophenpropit	n.d.	n.d.	$0.25 \text{ nM}^{\text{ab}}$
Clobenpropit	$> 10 \ \mu \mathrm{M}^\mathrm{ac}$	$> 10 \; \mu \mathrm{M}^\mathrm{ac}$	$0.13 \text{ nM}^{\text{ac}}$
Iodoproxyfan	$1.4 \ \mu M^{ad}$	$5.3 \ \mu M^{ad}$	$5 \ nM^{ad, ag}$
Impentamine	$126 \ \mu M^{ae}$	$250 \ \mu M^{ae}$	4 nM^{ae}
GR174737	$> 10 \ \mu M^{af}$	$> 10 \ \mu \mathrm{M}^\mathrm{af}$	$8 \ nM^{\rm af}$

Values determined in functional assays from guinea pig ileum contraction (H_1) , biochemical determinations in guinea pig cerebral cortical slices (H_1) , chronotropic responses in guinea pig atria (H_2) , cyclic AMP accumulation in guinea pig hippocampal slices (H_2) , inhibition of histamine release in rat cerebral cortical slices (H_3) , and inhibition of transmurally stimulated guinea pig ileum (H_3) . n.d., not determined.

^a Figge et al. (1979)	^r Calcutt et al. (1988)
^b Ison et al. (1973)	^s Schwartz et al. (1990)
^c Brown et al. (1986)	^t Donetti et al. (1984)
^d Marshall (1955)	^u Donaldson et al. (1988)
^e Trendelenburg (1960)	^v Yellin et al. (1979)
^f Hew et al. (1990)	^w Hirschfeld et al. (1992)
^g Hill et al. (1981)	^x Durant et al. (1978)
^h Hill (1990)	^y Buschauer et al. (1992)
ⁱ Arrang et al. (1983)	^z Black et al. (1972)
^j Ganellin (1982)	^{aa} Arrang et al. (1987)
^k Hill and Young (1981)	^{ab} Jansen et al. (1992)
¹ Tuong et al. (1980)	^{ac} Van der Goot et al. (1992)
^m Sellier et al. (1992)	^{ad} Ligneau et al. (1994)
ⁿ Brimblecombe et al. (1975)	^{ae} Vollinga et al. (1995)
^o Black et al. (1974)	^{af} Clitherow et al. (1996)
^p Cavanagh et al. (1983)	^{ag} Stark et al. (1996a)
^q Takeda et al. (1982)	^{ah} Buschauer (1989)

quence represents a 491 amino acid protein with a calculated molecular weight of 56 kDa (table 6). The protein has the seven putative transmembrane (TM) domains expected of a G-protein-coupled receptor and possesses N-terminal glycosylation sites. A striking feature of the proposed structure is the very large third

intracellular loop (212 amino acids) and relatively short (17 amino acids) intracellular C terminal tail. The availability of the bovine sequence and lack of introns has enabled the H₁-receptor to be cloned from several species (table 6) including rat (Fujimoto et al., 1993), guinea pig (Horio et al., 1993; Traiffort et al., 1994), mouse (Inove et al., 1996), and human (De Backer et al., 1993; Fukui et al., 1994; Moguilevsky et al., 1994; Smit et al., 1996c). The human histamine H₁-receptor gene has now been localized to chromosome 3 bands 3p14-p21 (Le Coniat et al., 1994).

At the present time, these different clones should be regarded as true species homologues of the histamine H_1 -receptor, even though there are notable differences between them in some antagonist potencies (table 4). Unfortunately, the number of H₁-receptor antagonists evaluated in binding studies in cells transfected with the different recombinant receptors is rather limited. Nevertheless, it is clear that the stereoisomers of chlorpheniramine show marked differences between species. For example, the guinea pig H_1 -receptor has a K_D of 0.9 nM for (+)-chlorpheniramine, whereas for the rat H_1 -receptor, the value is nearer 8 nM (table 4). Similar differences for this compound and others (notably mepyramine and triprolidine) have been reported for the native H₁-receptors in guinea pig and rat brain, respectively (table 4; Chang et al., 1979b; Hill and Young, 1980; Hill, 1990). Such species differences may also explain why [¹²⁵I]iodobolpyramine can label guinea pig CNS H₁-receptors but is unable to detect H₁-receptors in rat brain (Körner et al., 1986; Bouthenet et al., 1988). The native H₁-receptor protein has been solubilized from both guinea pig and rat brain membranes (Toll and Snyder, 1982; Treherne and Young, 1988a), and the solubilized receptor retains the same differences in H₁-antagonist potency for (+)-chlorpheniramine as that observed in membranes (Toll and Snyder, 1982). What is not clear, however, is why mepyramine appears to be more potent as an antagonist of the recombinant rat H_1 -receptor (expressed in C6 cells) than it is of the native H_1 -receptor in rat brain membranes (table 4; Chang et al., 1979b; Hill and Young, 1980; Fujimoto et al., 1993). The recombinant study performed in rat C6 cells (Fujimoto et al., 1993) is complicated by the presence of a low level of endogenous H₁-receptors (Peakman and Hill, 1994), but a high affinity for mepyramine $(K_D = 1 \text{ nM})$ has been deduced from functional studies in untransfected C6 cells (table 4; Peakman and Hill, 1994).

Site-directed mutagenesis has begun to shed some light on the binding domains for H_1 -agonists and -antagonists. Amino acid sequence alignment of the cloned histamine H_1 - and H_2 -receptors (see fig. 5) has led to the suggestion that the third (TM3) and fifth (TM5) transmembrane domains of the receptor proteins are responsible for binding histamine (Birdsall, 1991; Timmerman, 1992a). Aspartate (107) in TM3 of the human H_1 -receptor, which is conserved in all aminergic receptors, has

PHARMACOLOGICAL REVIEWS

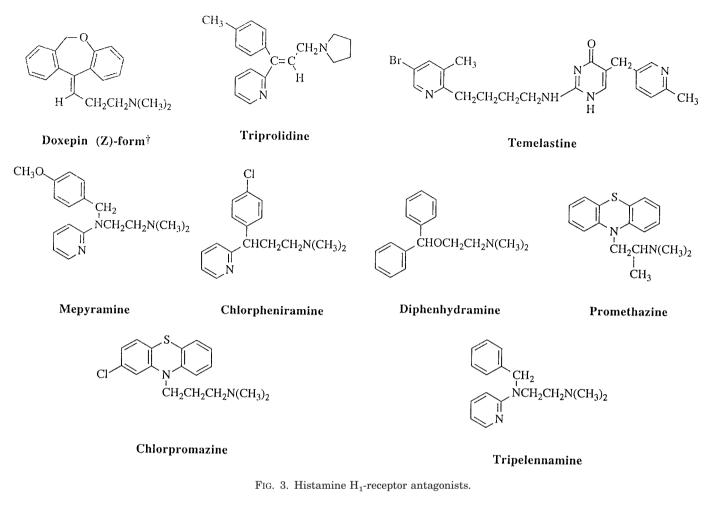


TABLE 4 Species variation in H_1 -receptor antagonist potency (K_i , nM)

Antagonist	Guinea pig		H	uman	Rat		Bovine	
	h_1^a (CHO)	${\rm H_1^{b}}$ (brain)	h ₁ (CHO)	H_1 (brain)	h ₁ (C6)	H_1 (brain)	$h_1 \left(\text{COS-7} \right)$	H1 (Adrenal Medulla)
Mepyramine	0.7	0.8	1.1, 4.0	1.0	$1.7 (1.0)^{c}$	9.1	2.6	0.9
(+)-Chlorpheniramine	0.9	0.8	3.5, 2.5	4.2	$7.5 (4.4)^{c}$	9.1	8.0	4.4
(-)-Chlorpheniramine	103	200	316	350	$540~(>620)^{c}$	500	760	350
Triprolidine	0.7	0.2	1.0	3.7	2.0	5.6	n.d.	0.8

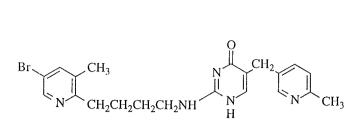
 $\label{eq:constraint} Unless \ otherwise \ stated, \ values \ show \ K_i \ determinations \ from \ inhibition \ of \ [^3H] mepyramine \ binding. \ n.d., \ not \ determined.$

^a h_1 = transfected H_1 -receptor cDNA.

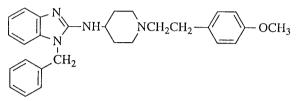
 b H₁ = native/endogenous H₁-receptor.

 $^{\rm c}$ Values in parentheses show the values obtained from functional studies of the endogenous H₁-receptor present in rat C6 cells (Peakman & Hill, 1994).

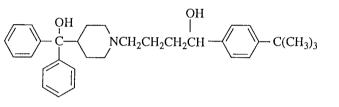
been shown to be essential for the binding of histamine and H_1 -receptor antagonists to the H_1 -receptor (Ohta et al., 1994). In the α_2 - and β_2 -adrenoceptors, two serine residues in TM5 accept the phenolic hydroxyl groups of the catechol ring of noradrenaline. In the H_1 -receptor, the residues corresponding to asparagine (198) and threonine (194) are in corresponding positions in TM5 of the human H_1 -receptor. However, substitution of an alanine for threonine (194) did not influence either agonist or antagonist binding (Ohta et al., 1994; Moguilevsky et al., 1995). Substitution of alanine (198) for asparagine (198) substantially decreased agonist, but not antagonist affinity (Ohta et al., 1994; Moguilevsky et al., 1995). Similar mutations to the corresponding residues (threonine (203) and asparagine (207) in the guinea pig H₁receptor sequence produce very similar results (Leurs et al., 1994a). It is interesting to note, however, that whereas 2-methylhistamine is similarly affected by the asparagine²⁰⁷ alanine mutation, the H₁-selective agonists 2-thiazolylethylamine, 2-pyridylethylamine, and 2-(3-bromophenyl)histamine are much less affected by this mutation (Leurs et al., 1994a). These data suggest


REVIEW

HARMACOLOGICAI

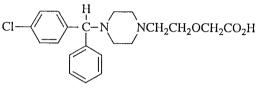

CH₃

HARMACOLOGI

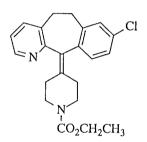

Bspet

Temelastine

Astemizole


Terfenadine

Acrivastine


CO₂H

H

Epinastine

Cetirizine

Loratidine

FIG. 4. "Nonsedating" H_1 -receptor antagonists. [†], The pharmaceutical product may be a mix of (E) and (Z) forms.

 TABLE 5

 "Nonsedating" H1-receptor antagonists

-	
pK _i value	Reference
9.5	Ter Laak et al. (1993)
9.2	Leurs et al. (1995b)
8.9	Ter Laak et al. (1994)
8.3	Ter Laak et al. (1993)
7.5	Ter Laak et al. (1993)
7.1	Ter Laak et al. (1993)
6.8	Ter Laak et al. (1993)
	9.5 9.2 8.9 8.3 7.5 7.1

Values are pK_i $(-log \ dissociation \ constant)$ determined from inhibition of $[^3H]$ mepyramine binding in homogenates of guinea pig cerebellum.

that asparagine (207) interacts with the N^{τ}-nitrogen of the imidazole ring of histamine. Furthermore, Leurs et al. (1995a) have recently shown that lysine (200) interacts with the N^{π}-nitrogen of histamine and is important for the activation of the H₁-receptor by histamine and the nonimidazole agonist, 2-pyridylethylamine. Interestingly, however, the lysine (200) alanine mutation did not alter the binding affinity of 2-pyridylethylamine to the guinea pig H₁-receptor (Leurs et al., 1995).

D. Signal Transduction Mechanisms

The primary mechanism by which histamine H_1 -receptors produce functional responses in cells is the activation of phospholipase C via a pertussis toxin-insensitive G-protein that is probably related to the G_{q/11} family of G-proteins (Hill, 1990; Leurs et al., 1995b). The number of tissues and cell types in which a histamine H_1 receptor-mediated increase in either inositol phosphate accumulation or intracellular calcium mobilization has been described is extensive, and further details are provided in several comprehensive reviews (Hill, 1990; Hill and Donaldson, 1992; Leurs et al., 1995b). Stimulation by histamine of [³H]inositol phosphate accumulation and calcium mobilization has also been observed in Chinese hamster ovary (CHO) cells transfected with the human, bovine, and guinea pig H₁-receptor complementary deoxyribonucleic acid (cDNA) (Leurs et al., 1994c; Smit et al., 1996c; Iredale et al., 1993; Megson et al., 1995). It is worth noting, however, that in some tissues, histamine can stimulate inositol phospholipid hydrolysis independently of H₁-receptors. Thus, in the longitudinal smooth muscle of guinea pig ileum and neonatal

 NH_2

Receptor	Species	Tissue of origin	Amino acid residues	Calculated mean weight (kDa)	Accession number	% Homology to human
H ₁ -receptor	Human	Genomic ^a	487	55.7	P35367	100
	Bovine	Adrenal medulla ^b	491	55.9	P30546	89.9
	Rat	Genomic ^c	486	55.6	P31390	87.8
	Guinea pig	Genomic ^d	488	55.6	P31389	82.9
	Mouse	Genomic ⁱ	489	55.6	D50095	84.0
H_2 -receptor	Human	Genomic ^e	359	40.1	P25021	100
	Canine	Genomic ^f	359	40.2	P17124	92.5
	Rat	Genomic ^g	358	40.2	P25102	91.1
	Guinea pig	Liver ^h	359	40.5	JC4120	93.3
	Mouse	Genomic ⁱ	359	40.4	D50096	91.1
^a De Backer et	al. (1993)	^e Gantz et al. (1991b)	^h Traiffort e	et al. (1995)		

^b Yamashita et al. (1991b)

^c Fujimoto et al. (1993)

^d Horio et al. (1993)

		I
Hl	(1)	MSLPNSSCLL EDKMCEGNKT TMASPQLMPL VVVLSTICLV TVGLMLLVLY
H2	(1)	MAPNGTASSFCL DSTACKITI TVVLAVLILI TVAGNVVVCL
		II
Hl		AVRSERKLHT VGNLYIVSLS VADLIVGAVV MPMNILYLLM SKWSLGRPLC
H2	(42)	AVGLNRRLRN LTNCFIVSLA ITDLLLGLLV LPFSAIYQLS CKWSFGKVFC
774	(101)	
		LÉWLSMDYVA STASIFSVFI LCIDRYRSVQ QPLRYLKYRT KTRASATILG NIYTSLDVML CTASILNLFM ISLDRYCAVM DPLRYPVLVT FVRVAISLVL
n2	(92)	NIIISLDVML CTASILNLFM ISLDRICAVM DPLRIPVLVT PVRVAISLVL
		IV V
нı	(151)	AWFLSF.LWVI PI.LGWNHFMQ QTSVRREDKC ETDFYDVTWF KVMTAIINFY
		IWVISITLSFL SIHLGWNS.RN ETSKGNHTTSKC KVOVNEVY GLVDGLVTFY
	,,	
H1	(201)	LPTLLMLWFY AKIYKAVRQH CQHRELINRS LPSFSEIKLR PENPKGDAKK
H2	(193)	LPLLIMCITY YRIFKVARDQ AKRINHI
	(251)	PGKESPWEVL KRKPKDAGGG SVLKSPSQTP KEMKSPVVFS QEDDREVDKL
H2		•••••••••••••••••••••••••••••••••••••••
	(202)	VOTELETIEN AND STREAMED INVESTIGATION OF A STREAMED
		YCFPLDIVHM QAAAEGSSRD YVAVNRSHGQ LKTDEQGLNT HGASEISEDQ
HZ	(220)	SSWK AATI
Hl	(351)	MLGDSQSFSR TDSDTTTETA PGKGKLRSGS NTGLDYIKFT WKRLRSHSRQ
H2		······································
		VI
Hl	(401)	YVSGLHMNRE RKAAKQLGFI MAAFILCWIP YFIFFMVIAF .CKNCCNEHLH
H2	(228)	RE HKATVTLAAV MGAFIICWFP YFTAFVYRGL RGDDAINEVLE
		VII
		MFTIWLGYIN STLNPLIYPL CNENFKKTFK RILHIRS
H2	(271)	AIVLWLGYAN SALNPILYAA LNRDFRTGYQ QLFCCRLANR NSHKTSLRSN
Hl		
	(220)	ASQLSRTQSR EPROQEEKPL KLOVWSGTEV TAPOGATDR
n2	(320)	ROQUSRIQSE EPRQQEERPL REQVWSGIEV IRPQGAIDE

^f Gantz et al. (1991a)

^g Ruat et al. (1991)

FIG. 5. Alignment of amino acid sequences of the human histamine H₁- and H₂-receptors. Residues that are identical in the two sequences are shown in bold. Lines show the putative transmembrane spanning domains.

rat brain (Donaldson and Hill, 1985, 1986b; Claro et al., 1987), a component can be identified in the response to histamine that is resistant to inhibition by H_1 -receptor antagonists. It remains to be established, however, whether these effects are due to "tyramine-like" effects of histamine on neurotransmitter release (Bailey et al., 1987; Young et al., 1988a) or direct effects of histamine on the associated G-proteins (Seifert et al., 1994).

In addition to effects on the inositol phospholipid signaling systems, histamine H₁-receptor activation can

^h Traiffort et al. (1995) ⁱ Inove et al. (1996)

^j Kobayashi et al. (1996)

lead to activation of several other signaling pathways, many of which appear to be secondary to changes in intracellular calcium concentration or the activation of protein kinase C. Thus, histamine can stimulate nitric oxide synthase activity (via a Ca²⁺/calmodulin-dependent pathway) and subsequent activation of soluble guanylyl cyclase in a variety of different cell types (Schmidt et al., 1990; Leurs et al., 1991a; Yuan et al., 1993; Casale et al., 1985; Duncan et al., 1980; Hattori et al., 1990; Sertl et al., 1987). Arachidonic acid release and the synthesis of arachidonic acid metabolites such as prostacyclin and thromboxane A₂ can also be enhanced by H₁-receptor stimulation (Carter et al., 1988; Resink et al., 1987; Leurs et al., 1994c; Muriyama et al., 1990). Interestingly, in CHO-K1 cells transfected with the guinea pig H₁-receptor, the histamine-stimulated release of arachidonic acid is partially inhibited (approximately 40%) by pertussis toxin, whereas the same response in HeLa cells possessing a native H₁-receptor was resistant to pertussis toxin treatment (Leurs et al., 1994c). The reason for this difference remains to be established, but it does caution against the use of signal transduction pathways in highly expressed recombinant cell systems as a primary receptor classification tool. This point is best illustrated by the fact that in intact cellular systems, H₁-receptor activation can produce substantial changes in the intracellular levels of cAMP. In most tissues, histamine H₁-receptor activation does not activate adenylyl cyclase directly but acts to amplify direct cAMP responses to histamine H₂-, adenosine A₂-, and vasoactive intestinal polypeptide receptors (Palacios et al., 1978; Al-Gadi and Hill, 1987, 1985; Donaldson et al., 1989; Garbarg and Schwartz, 1988; Magistretti and Schorderet, 1985; Marley et al., 1991). In many of these cases, a role for both intracellular Ca²⁺ ions and protein kinase C has been implicated in this augmentation response (Al-Gadi and Hill, 1987; Schwabe et al., 1978; Garbarg and Schwartz, 1988). In CHO cells transfected with the bovine or guinea pig H_1 -receptor, H_1 -

Bspet

Downloaded from pharmrev.aspetjournals.org by guest on June 15, 2012

receptor activation can also lead to both direct cAMP responses and to an enhancement of forskolin-stimulated cAMP formation (Leurs et al., 1994c; Sanderson et al., 1996).

III. Histamine H₂-Receptor

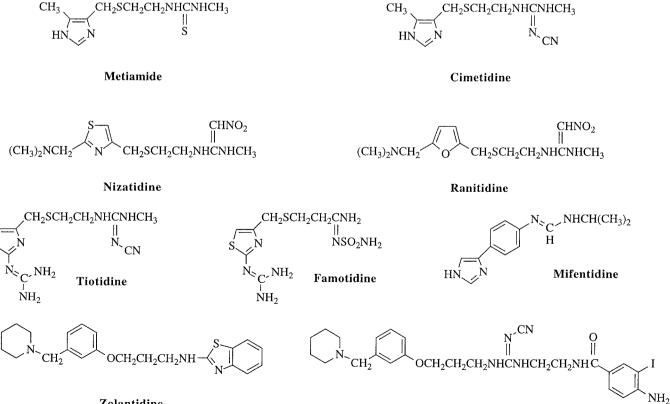
A. Distribution and Function

Unlike the situation with H₁-selective radioligands, attempts to map the distribution of H2-receptors by using radiolabeled H₂-receptor antagonists have met with variable success (Hill, 1990). Thus, [³H]cimetidine and ^{[3}H]ranitidine have proved unsuitable as H₂-radioligands, and in the case of cimetidine, the binding to sites specifically labeled with the radioligand is potently inhibited by imidazoles that have very low H₂-receptor binding affinities (Burkard, 1978; Kendall et al., 1980; Smith et al., 1980; Bristow et al., 1981; Warrender et al., 1983). More success has been achieved with [³H]tiotidine, which has a higher affinity for the H₂-receptor (table 7) in guinea pig brain, lung parenchyma, and CHO-K1 cells transfected with the human H₂-receptor cDNA (Gajtkowski et al., 1983; Norris et al., 1984; Sterk et al., 1986; Foreman et al., 1985a; Gantz et al., 1991a), although studies in rat brain were not successful (Maayani et al., 1982). At the present time, [¹²⁵I]iodoaminopotentidine is the most successful H2-radioligand (Hirschfeld et al., 1992). It has high affinity ($K_D = 0.3$ nM) for the histamine H₂-receptor in brain membranes (Martinez-Mir et al., 1990; Ruat et al., 1990b; Traiffort et al., 1992a) and CHO-K1 cells expressing the cloned rat H₂-receptor (Traiffort et al., 1992b). The compound has also been used for autoradiographic mapping of H₂receptors in mammalian brain (Ruat et al., 1990a; Traiffort et al., 1992a). In human brain, histamine H₂-receptors are widely distributed with highest densities (measured using [¹²⁵I]iodoaminopotentidine) in the basal ganglia, hippocampus, amygdala, and cerebral cortex (Traiffort et al., 1992a). Lowest densities were detected in cerebellum and hypothalamus (Traiffort et al., 1992a). A similar distribution has been observed in guinea pig brain (Ruat et al., 1990b). [¹²⁵I]Iodoazidopotentidine has successfully been used for irreversible labeling (Ruat et al., 1990b; Hirschfeld et al., 1992).

Most information to date on the distribution of histamine H₂-receptor, however, has been provided by functional studies in different tissues (Hill, 1990). Histamine H₂-receptor–stimulated cAMP accumulation or adenylyl cyclase activity has been demonstrated in a variety of tissues including brain (Hegstrand et al., 1976; Green et al., 1977; Kanof et al., 1977; Palacios et al., 1978; Gajtkowski et al., 1983; Al-Gadi and Hill, 1985, 1987), gastric cells (Soll and Wollin, 1979; Gespach et al., 1982), and cardiac tissue (Johnson et al., 1979a,b; Kanof and Greengard, 1979a; Johnson, 1982). Histamine H₂-receptors have a potent effect on gastric acid secretion, and the inhibition of this secretory process by H₂-receptor antagonists has provided evidence for an important physiological role of histamine in the regulation of gastric secretion (Black et al., 1972; Black and Shankley, 1985; Soll and Berglindh, 1987). High concentrations of histamine are also present in cardiac tissues of most animal species and can mediate positive chronotropic and inotropic effects on atrial or ventricular tissues via H_2 -receptor stimulation (Black et al., 1972; Inui and Imamura, 1976; Levi et al., 1982; Hattori et al., 1983; Hattori and Levi, 1984; Hescheler et al., 1987; Levi and Alloatti, 1988). H₂-receptor-mediated smooth muscle relaxation has also been documented in airway, uterine, and vascular smooth muscle (Black et al., 1972; Reinhardt and Ritter, 1979; Gross et al., 1981; Evre and Chand, 1982; Edvinsson et al., 1983; Foreman et al., 1985b; Ottosson et al., 1989). Finally, histamine H₂receptors can inhibit a variety of functions within the immune system (Hill, 1990). H₂-receptors on basophils

TABLE 7 Histamine receptor radioligands

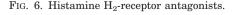
	1110101111110	ecoptor ruanonganae	
Receptor	Ligand	K _D	Tissue
H_1 -receptor	[³ H]Mepyramine	0.8 nM	Guinea pig brain ^a
	[¹²⁵ I]Iodobolpyramine	0.1 nM	Guinea pig brain ^b
	[¹²⁵ I]Iodoazidophenpyramine	0.01 nM	Guinea pig cerebellum ^c
	[¹¹ C]Mepyramine	1.0 nM	Human brain (in vivo) ^d
	[¹¹ C]Doxepin	0.1 nM	Human brain (in vivo) ^e
H_2 -receptor	[³ H]Tiotidine	25 nM	Guinea pig brain ^f
	[¹²⁵ I]Iodoaminopotentidine	0.3 nM	Guinea pig brain ^g
	[¹²⁵ I]Iodoazidopotentidine	10 nM	Guinea pig brain ^g
H_3 -receptor	$[^{3}H]R-(\alpha)$ -methylhistamine	0.5 nM	Rat brain ^h
	[³ H]N ^α -methylhistamine	2.0 nM	Rat cerebral cortex ⁱ
	[¹²⁵ I]Iodophenpropit	0.3 nM	Rat cerebral cortex ^j
	[¹²⁵ I]Iodoproxyfan	0.065 nm	Rat striatum ^k
	[³ H]GR168320	0.1 nM	Rat cerebral cortex^1
^a Hill et al. (1981)	^e Yanai et al. (1995)	ⁱ Clark and Hill (1995)	
^b Körner et al. (1986)	^f Gajtkowski et al. (1983)	^j Jansen et al. (1992)	
^c Ruat et al. (1988)	^g Ruat et al. (1990a)	^k Ligneau et al. (1994)	
^d Villemagne et al. (1991)	^h Arrang et al. (1990)	¹ Brown et al. (1994)	



REVIEW

PHARMACOLOGICA

and mast cells have been shown to negatively regulate


the release of histamine (Bourne et al., 1971; Lichten-The initial definition of the H₁- and H₂-subclasses of stein and Gillespie, 1975; Lett-Brown and Leonard, histamine receptor by Ash and Schild (1966) and Black 1977; Ting et al., 1980; Plaut and Lichtenstein, 1982). and colleagues (1972) led to a successful search for H₂-Furthermore, there is increasing evidence that H₂-rereceptor selective antagonists with clinical relevance for ceptors on lymphocytes can inhibit antibody synthesis, the treatment of peptic ulcer. Burimamide was the first T-cell proliferation, cell-mediated cytolysis, and cytokine compound developed that showed selectivity for the H₂production (Bourne et al., 1971; Melmon et al., 1974, 1981; receptor (Black et al., 1972), but more recent work has Griswold et al., 1984; Khan et al., 1985, 1986; Sansoni et shown that this compound is a more potent H_3 -receptor al., 1985; Melmon and Khan, 1987). In the CNS, histamine antagonist (Arrang et al., 1983). Cimetidine and meti-H₂-receptor activation can inhibit nerve cells (Haas and amide were developed directly from burimamide (Black Bucher, 1975; Haas and Wolf, 1977), but the most intriguet al., 1974; Brimblecombe et al., 1975; Ganellin, 1978). Since then, a large number of compounds have been ing action is a block of the long-lasting after-hyperpolardeveloped with H₂-receptor antagonist properties [see ization and the accommodation of firing, an effect with a Ganellin (1992) for review]. These include ranitidine remarkably long duration leading to potentiation of excitation in rodents (Haas and Konnerth, 1983; Haas and (Bradshaw et al., 1979), tiotidine (Yellin et al., 1979), nizatidine (Lin et al., 1986), famotidine (Takeda et al., Greene, 1986) and human brain (Haas et al., 1988). A slow 1982), and mifentidine (Donetti et al., 1984), which have excitation is also common (Greene and Haas, 1989; Phelan been extensively used for characterization purposes (taet al., 1990). Synaptic transmission in the hippocampus is ble 3; fig. 6). Iodoaminopotentidine ($K_D = 2.5 \text{ nM}$) is one profoundly enhanced (Kostopoulos et al., 1988), and synof the most potent H₂-receptor antagonists available, aptic plasticity is induced or enhanced (Brown et al., 1995). and, as mentioned above, this compound has been used An increase of the hyperpolarization-activated current has as a successful radioligand (Hirschfeld et al., 1992). also been described in thalamic relay neurons (McCormick Most H₂-receptor antagonists are polar compounds and and Williamson, 1991). Indications for non-cAMP medipenetrate poorly into the CNS. Although this property is ated actions of H₂-receptor activation are given by Haas et of great use for selective actions on peripheral tissues (e.g., gastric mucosa), it does limit the use of the com-

Zolantidine

al. (1978) and Jahn et al. (1995).

Iodoaminopotentidine

pounds for the in vivo evaluation of H_2 -receptor function within the CNS. However, one compound (zolantidine) is a potent and selective brain-penetrating histamine H_2 receptor antagonist (table 3; Calcutt et al., 1988; Young et al., 1988b). Both cimetidine and ranitidine have been shown to demonstrate inverse agonism on histamine H_2 -receptors transfected into CHO cells (Smit et al., 1996a). Thus, in CHO cells expressing high levels of H_2 -receptors, in which a considerable constitutive activation of H_2 -receptors was demonstrated, cimetidine and ranitidine inhibited basal adenylyl cyclase activity (Smit et al., 1996a). In contrast, burimamide behaved as a neutral antagonist (Smit et al., 1996a).

4-Methylhistamine was the first agonist described that had any selectivity for the H₂-receptor (Black et al., 1972), although more potent and selective H_2 -agonists are now available (table 2). It is noteworthy that many of the selective H_2 -agonists exhibit H_1 - or H_3 -antagonist properties (see table 2); consequently the demonstration of H₂-agonism in a given tissue or cell type needs confirming with H₂-antagonists. Impromidine is approximately 48 times more potent than histamine in mediating atrial chronotropic responses, but in several other H₂-receptor-containing tissues, its relative potency and efficacy are lower (Durant et al., 1978; Leurs et al., 1995b). A large number of impromidine analogues have been synthesized and evaluated for H₂-agonism. These studies have led to the development of the potent H₂agonists, sopromidine and arpromidine (table 2; Timmerman, 1992c). Arpromidine and analogues are potential candidates for treatment of congestive heart failure (Buschauer, 1989; Buschauer and Baumann, 1991; Mörsdorf et al., 1990). Another potent H₂-agonist has been derived as an analogue of dimaprit by considering cyclic forms of the isothiourea group (Eriks et al., 1992).

C. Receptor Structure

Photoaffinity binding studies using [¹²⁵I]iodoazidopotentidine and sodium dodecyl sulfate-polyacrylamide gel electrophoresis have suggested that the H₂-receptor in guinea pig hippocampus and striatum has a molecular weight of 59 kDa (Ruat et al., 1990b). However, comparison with the calculated molecular weights (40.2 to 40.5 kDa) for the recently cloned H_2 -receptors (table 6) suggests that the native H₂-receptor in guinea pig brain is glycosylated. Consistent with this proposal, it is noteworthy that all of the cloned H₂-receptor proteins possess N-glycosylation sites in the N-terminus region (Gantz et al., 1991a,b; Ruat et al., 1991; Traiffort et al., 1995). Removal of these glycosylation sites by site-directed mutagenesis, however, has shown that N-glycosylation of the H₂-receptor is not essential for cell surface localization, ligand binding, or coupling via G_s to adenylyl cyclase (Fukushima et al., 1995).

The H_2 -receptor was first cloned by Gantz and colleagues using the polymerase chain reaction to amplify a partial length H_2 -receptor sequence from canine gastric parietal cDNA using degenerate oligonucleotide primers (Gantz et al., 1991b). This sequence was then used to identify a full length H₂-receptor clone following screening of a canine genomic library (Gantz et al., 1991b). Rapid cloning of the rat, human, guinea pig, and mouse H₂-receptors followed (Gantz et al., 1991a; Ruat et al., 1991; Traiffort et al., 1995; Kobayashi et al., 1996). These DNA sequences encode for a 359 (canine, human, guinea pig) or 358 (rat) receptor protein that has the general characteristics of a G-protein-coupled receptor. The most notable difference between the structure of the cloned H₂- and H₁- receptors is the much shorter 3rd intracellular loop of the H2-receptor and the longer H2-receptor C terminus. Expression of the rat and human H₂-receptor proteins in CHO cells has revealed the expected pharmacological specificity of H₂-receptors as judged by radioligand binding studies using [125I]iodoaminopotentidine (Traiffort et al., 1992b; Leurs et al., 1994c). Recent chromosomal mapping studies have assigned the H₂-receptor gene to human chromosome 5 (Traiffort et al., 1995).

Comparison of the H₂-receptor sequence with other biogenic amine G-protein-coupled receptors has indicated that an aspartate in TM3 and an aspartate and threonine residue in TM5 are responsible for binding histamine (Birdsall, 1991). Replacement of aspartate (98) by an asparagine residue in the canine H₂-receptor results in a receptor that does not bind the antagonist tiotidine and does not stimulate cAMP accumulation in response to histamine (Gantz et al., 1992). Similarly, changing the aspirate (186) of TM5 to an alanine resulted in complete loss of tiotidine binding without affecting the EC₅₀ for histamine-stimulated cAMP formation (Gantz et al., 1992). Changing the threonine (190) to an alanine, however, resulted in a lower K_D for tiotidine and a reduction in both the maximal cAMP response and histamine EC_{50} value (Gantz et al., 1992). Mutation of Asp (186) and Gly (187) in the canine H_2 -receptor (to Ala (186) and Ser (187), however, produces a bifunctional receptor that can be stimulated by adrenaline and inhibited by both propranolol and cimetidine (Delvalle et al., 1995). Thus, these data suggest that the pharmacological specificity of the H₂-receptor resides in only a few key amino acid residues.

Other site-directed mutagenesis studies on the H_2 -receptor have been very limited. However, Smit et al. (1996) have identified a residue in the second intracellular loop [leucine (124)] of the rat H_2 -receptor, which appears necessary for efficient coupling to G_s .

D. Signal Transduction Mechanisms

It is generally accepted that histamine H_2 -receptors couple to adenylyl cyclase via the GTP-binding protein G_s (Johnson, 1982; Hill, 1990; Leurs et al., 1995b). Histamine is a potent stimulant of cAMP accumulation in many cell types (Johnson, 1982), particularly those of CNS origin (Daly, 1977). Thus, H_2 -receptor-mediated effects on cAMP accumulation have been observed in

brain slices (Al-Gadi and Hill, 1985; Palacios et al., 1978), gastric mucosa (Soll and Wollin, 1979; Chew et al., 1980; Batzri et al., 1982; Gespach et al., 1982), fat cells (Grund et al., 1975; Keller et al., 1981), cardiac myocytes (Warbanow and Wollenberger, 1979), vascular smooth muscle (Reinhardt and Ritter, 1979), basophils (Lichtenstein and Gillespie, 1975), and neutrophils (Busse and Sosman, 1977). Furthermore, H₂-receptormediated cAMP accumulation has been demonstrated in CHO cells transfected with the rat, canine, or human H₂-receptor cDNA (Gantz et al., 1991a,b; Leurs et al., 1994b; Fukushima et al., 1995).

Direct stimulation of adenylyl cyclase activity in cellfree preparations has been detected in both brain and cardiac muscle membranes (Hegstrand et al., 1976; Green et al., 1977; Green and Maayani, 1977; Kanof et al., 1977; Johnson et al., 1979a,b; Kanof and Greengard, 1979a.b: Newton et al., 1982; Olianas et al., 1984). However, caution is required regarding the interpretation of receptor characterization studies using histamine-stimulated adenylyl cyclase activity alone (Hill, 1990). A striking feature of studies of histamine H₂-receptorstimulated adenylyl cyclase activity in membrane preparations is the potent antagonism observed with certain neuroleptics and antidepressants (table 8: Spiker et al., 1976; Green et al., 1977; Green and Maayani, 1977; Kanof and Greengard, 1978; Green, 1983). It is notable, however, that most of the neuroleptics and antidepressants are approximately 2 orders of magnitude weaker as antagonists of histamine-stimulated cAMP accumulation in intact cellular systems (table 8; Tuong et al., 1980: Kamba and Richelson, 1983: Hill, 1990). One potential explanation of these differences resides within the buffer systems used for the cell-free adenylyl cyclase assays. Some differences in potency of some antidepressants and neuroleptics have been observed when membrane binding of H₂-receptors has been evaluated using [¹²⁵I]iodoaminopotentidine (table 8; Traiffort et al., 1991). However, invariably the differences observed in the K_i values deduced from ligand binding studies in different buffers are not as large as the differences in K_B values obtained from functional studies (table 8). For example, in the case of amitriptyline, no difference was observed in binding affinity in Krebs and Tris buffers (Traiffort et al., 1991).

In addition to G_s-coupling to adenylyl cyclase, there are reports of H₂-receptors coupling to other signaling systems. For example, in gastric parietal cells, H₂-receptor stimulation has been shown to increase the intracellular free concentration of calcium ions (Chew, 1985, 1986; Chew and Petropoulos, 1991; Malinowska et al., 1988; Delvalle et al., 1992a). A similar calcium response to histamine H₂-receptor stimulation has also been observed in HL-60 cells (Mitsuhashi et al., 1989; Seifert et al., 1992) and in hepatoma-derived cells transfected with the canine H₂-receptor cDNA (Delvalle et al., 1992b). In these latter cells, the influence on $[Ca^{2+}]_i$ was accompanied by both an increase in inositol trisphosphate accumulation and a stimulation of cAMP accumulation (Delvalle et al., 1992b). Interestingly, the H₂receptor-stimulated calcium and inositol trisphosphate responses in these cells were both inhibited by cholera toxin treatment (but not by pertussis toxin), whereas cholera toxin produced the expected increase in cAMP levels (Delvalle et al., 1992a,b). In single parietal cells, H₂-receptors have been shown to release calcium from intracellular calcium stores (Negulescu and Machen, 1988). It should be noted, however, that no effect of H₂-agonists was observed on inositol phosphate accumulation or intracellular calcium levels in CHO cells transfected with the human H_2 -receptor (Leurs et al., 1994a).

Downloaded from pharmrev.aspetjournals.org by guest on June 15, 2012

TABLE 8 Comparison of antagonist K_B values for inhibition of H_2 -receptor-stimulated adenylyl cyclase activity in membranes and cyclic AMP accumulation in intact cellular systems

Antagonist		Antagonist K_B value ((μM)	Binding studies $(K_i, \mu M)$		
U	Slices ^a	Dissociated cells ^b	Homogenates ^{c,d,e}	Krebs buffer	Tris buffer	
Cimetidine	0.6	0.5	0.9			
Metiamide	0.8	n.d.	1.0			
Tiotidine	n.d.	0.03	0.03	0.02	0.007	
Cyproheptadine	5.7	n.d.	0.04			
Mianserin	10.0	2.8	0.07	1.01	0.20	
Imipramine	> 10	3.3	0.2			
Amitriptyline	3.5	1.9	0.05	0.09	0.09	
Chlorpromazine	5.9	3.0	0.04			
Haloperidol	> 10	29	0.08	1.61	0.42	

Ν cyclic AMP accumulation in guinea pig hippocampal slices, and of H₂-mediated cyclic AMP accumulation in dissociated hippocampal tissue. n.d., not determined.

^a Tuong et al. (1980)

^d Kanof and Greengard (1978)

^b Kamba et al. (1983)

^c Green et al. (1977)

^e Kanof and Greengard (1979a,b)

^f Traiffort et al. (1991)

In CHO cells transfected with the rat H₂-receptor, H₂-receptor stimulation produces both an increase in cAMP accumulation and an inhibition of P_{2u}-receptormediated arachidonic acid release (Traiffort et al., 1992b). Interestingly, however, the effect on phospholipase A₂ activity (i.e., arachidonic acid release) was not mimicked by forskolin, PGE1, or 8-bromo-cAMP, suggesting a mechanism of activation that is independent of cAMP-mediated protein kinase A activity (Traiffort et al., 1992b). However, in CHO cells transfected with the human H₂-receptor, no inhibitory effects of H₂-receptor stimulation were observed on phospholipase A₂ activity (Leurs et al., 1994b). This observation suggests that these cAMP-independent effects might depend on the level of receptor expression or subtle differences between clonal cell lines.

IV. Histamine H_3 -Receptor

A. Distribution and Function

The high apparent affinity of $R(\alpha)$ -methylhistamine for the histamine H_3 -receptor has enabled the use of this compound as a radiolabeled probe (Arrang et al., 1987). This compound has been successfully used to identify a single binding site in rat cerebral cortical membranes, which in phosphate buffer has the pharmacological characteristics of the H_3 -receptor (Arrang et al., 1987, 1990). $[^{3}H]R-(\alpha)$ -methylhistamine binds with high affinity (K_D = 0.3 nM) to rat brain membranes, although the binding capacity is generally low (approximately 30 fmol/mg protein; (Arrang et al., 1987). Autoradiographic studies with $[{}^{3}H]R$ -(α)-methylhistamine have demonstrated the presence of specific thioperamide-inhibitable binding in several rat brain regions, particularly cerebral cortex, striatum, hippocampus, olfactory nucleus, and the bed nuclei of the stria terminalis, which receive ascending histaminergic projections from the magnocellular nuclei of the posterior hypothalamus (Arrang et al., 1987; Pollard et al., 1993). H_3 -receptors have also been visualized in human brain and the brain of nonhuman primates (Martinez-Mir et al., 1990). H_3 -receptor binding has been additionally characterized using $[{}^{3}H]R-(\alpha)$ -methylhistamine in guinea pig cerebral cortical membranes (Kilpatrick and Michel, 1991), guinea pig lung (Arrang et al., 1987), guinea pig intestine, and guinea pig pancreas (Korte et al., 1990). N^{α}-methylhistamine has also proved successful as a radiolabeled probe for the H_3 receptor. Although the relative agonist activity of N^{α} methylhistamine (with respect to histamine) is fairly similar for all three histamine receptor subtypes (table 2), the binding affinity of histamine and N^{α}-methylhistamine for the H_3 -receptor is several orders of magnitude higher than for either the H₁- or H₂-receptors (Hill et al., 1977; Ruat et al., 1990b). This ligand can identify high-affinity H_3 -receptor sites in both guinea pig (Korte et al., 1990) and rat (West et al., 1990; Kathman et al., 1993; Clark and Hill, 1995) brain.

The binding of ³H-agonists to H_3 -receptors in brain tissues has been shown to be regulated by guanine nucleotides, implying a linkage to heterotrimeric G-proteins (Arrang et al., 1987, 1990; Zweig et al., 1992; Clark and Hill, 1995). The binding of H_3 -receptor agonists also seems to be sensitive to several cations. Magnesium and sodium ions have been shown to inhibit $[{}^{3}H]R-(\alpha)$ -methylhistamine binding in rat and guinea pig brain (Kilpatrick and Michel. 1991), and the presence of calcium ions has been reported to reveal heterogeneity of agonist binding (Arrang et al., 1990). The inhibitory effect of sodium ions on agonist binding means that higher B_{max} values are usually obtained in sodium-free Tris buffers compared with that in Na/K phosphate buffers (Clark and Hill, 1995). West et al. (1990) have suggested that multiple histamine H_3 -receptor subtypes exist in rat brain (termed H_{3A} and H_{3B}) on the basis of $[{}^{3}H]N^{\alpha}$ methylhistamine binding in rat cerebral cortical membranes in 50 mM Tris buffer. Under these conditions, the selective H_3 -antagonist thioperamide can discriminate two affinity binding states (West et al., 1990). However, Clark and Hill (1995) have noted that the observed heterogeneity of thioperamide binding is dependent on the concentration of sodium ions or guanine nucleotides within the incubation medium. Thus, in the presence of 100 mM sodium chloride, thioperamide binding conforms to a single binding isotherm (Clark and Hill, 1995). The simplest interpretation of these data is that the H_3 receptor can exist in different conformations for which thioperamide, but not agonists or other H_3 -antagonists (e.g., clobenpropit), can discriminate. Clark and Hill (1995) have suggested that the equilibrium between these conformations is altered by guanine nucleotides or sodium ions. If this hypothesis is correct, it is likely that the different binding sites represented resting, active, or G-protein-coupled conformations of the H_3 -receptor. Furthermore, if thioperamide preferentially binds to uncoupled receptors, then this compound should exhibit negative efficacy in functional assays.

More recently, radiolabeled H_3 -receptor antagonists have become available. The first compound to be developed was [¹²⁵I]iodophenpropit, which has been used to successfully label H_3 -receptors in rat brain membranes (Jansen et al., 1992). Inhibition curves for thioperamide and iodophenpropit were consistent with interaction with a single binding site, but H_3 -receptor agonists were able to discriminate high- [4 nM for $R-(\alpha)$ -methylhistamine] and low- $[0.2 \mu M$ for R-(α)-methylhistamine] affinity binding sites (Jansen et al., 1992). More recently, [³H]GR16820 (Brown et al., 1994) and [¹²⁵I]iodoproxyfan (Ligneau et al., 1994) have also proved useful as high-affinity radiolabeled H_3 -antagonists. [¹²⁵I]iodoproxyfan (Stark et al., 1996a) is the most potent and selective ligand available at the present time with a K_D of 65 pM (Ligneau et al., 1994). In rat striatum, in the

267

Bspet

presence of guanine nucleotides such as guanosine 5'O-(3-thiotriphosphate) (GTP γ S), 40% of the binding sites exhibited a 40-fold lower affinity for H_3 -agonists, providing further evidence for a potential linkage of H_3 -receptors to G-proteins (Ligneau et al., 1994). [³H]thioperamide and [³H]5-methylthioperamide have also been used to label H_3 -receptors in rat brain membranes (Alves-Rodrigues et al., 1996; Yanai et al., 1994). However, [³H]thioperamide was shown to bind additionally to lowaffinity, high-capacity, non H_3 -receptor sites in this tissue (Alves-Rodrigues et al., 1996).

In addition to data obtained from ligand binding studies, evidence for the localization of histamine H_3 -receptors has also come from functional studies, primarily involving inhibition of neurotransmitter release. The H_3 -receptor was first characterized as an autoreceptorregulating histamine synthesis and release from rat cerebral cortex, striatum, and hippocampus (Arrang et al., 1983, 1985b,c 1987a, 1988a,b). H₃-receptor-mediated inhibition of histamine release has also been observed in human cerebral cortex (Arrang et al., 1988a). Differences in the distribution of H_3 -receptor binding sites and the levels of histidine decarboxylase (an index of histaminergic nerve terminals) suggested at an early stage that H_3 -receptors were not confined to histamine-containing neurons within the mammalian CNS (Arrang et al., 1987; Van der Werf and Timmerman, 1989). This has been confirmed by the observations that H_3 -receptors can regulate serotonergic (Schlicker et al., 1988), noradrenergic (Schlicker et al., 1989, 1992), cholinergic (Clapham and Kilpatrick, 1992), and dopaminergic (Schlicker et al., 1993) neurotransmitter release in mammalian brain. Histamine H_3 -receptor activation inhibits the firing of the histamine-neurons in the posterior hypothalamus through a mechanism different from autoreceptor functions found on other aminergic nuclei, presumably a block of Ca^{2+} -current (Haas, 1992). Electrophysiological evidence for reduction of excitatory transmitter release (glutamate) has been presented by Brown and Reymann (unpublished data, 1996).

Inhibitory effects of H_3 -receptor activation on neurotransmission have also been documented in the periphery. Thus, H_3 -receptors have been identified regulating the release of sympathetic neurotransmitters in guinea pig mesenteric artery (Ishikawa and Sperelakis, 1987), human saphenous vein (Molderings et al., 1992), guinea pig atria (Endou et al., 1994; Imamura et al., 1994), and human heart (Imamura et al., 1995). Inhibition of parasympathetic nerve activity has also been observed in guinea pig ileum and human bronchi and trachealis (Trzeciakowski, 1987; Tamura et al., 1988; Ichinose et al., 1989; Ichinose and Barnes, 1989; Hew et al., 1990; Menkveld and Timmerman, 1990; Leurs et al., 1991a,b; Poli et al., 1991). An inhibitory effect of H_3 -receptor stimulation on release of neuropeptides (tachykinins or calcitonin gene-related peptide) from sensory C fibers has been reported from airways (Ichinose et al., 1990), meninges (Matsubara et al., 1992), skin (Ohkubo and Shibata, 1995), and heart (Imamura et al., 1996). A modulation of acetylcholine, capsaicin, and substance P effects by histamine H_3 -receptors in isolated perfused rabbit lungs has also been reported (Delaunois et al., 1995).

There is evidence that H_3 -receptor stimulation can inhibit the release of neurotransmitters from nonadrenergic-noncholinergic nerves in guinea pig bronchioles (Burgaud and Oudart, 1994) and ileum (Taylor and Kilpatrick, 1992). Interestingly, in guinea pig ileum, the H_3 -antagonists betahistine and phenylbutanoylhistamine were much less potent as inhibitors of H_3 -mediated effects on nonadrenergic-noncholinergic transmission than they were as antagonists of histamine release in rat cerebral cortex (Taylor and Kilpatrick, 1992). A similar low potency has been observed for these two antagonists for antagonism of H_3 -receptor-mediated [³H]acetylcholine release from rat entorhinal cortex (Clapham and Kilpatrick, 1992) and antagonism of H_3 -receptormediated 5-hydroxytryptamine (5-HT) release from porcine enterochromaffin cells (Schworer et al., 1994). These observations provide support for the possible existence of distinct H_3 -receptor subtypes, but these responses need to be investigated further to exclude alternative explanations. For example, Arrang et al. (1995) have recently shown that phenylbutanoylhistamine can inhibit [³H]acetylcholine release from rat entorhinal cortex slices and synaptosomes via a nonhistamine receptor mechanism. Thus, the potency of phenylbutanoylhistamine as an H_3 -receptor antagonist in these preparations may be greatly underestimated because of the additional nonspecific properties of the drug (Arrang et al., 1995).

The observed inhibitory effect of H_3 -receptor stimulation on 5-HT release from porcine enterochromaffin cells in strips of small intestine (Schworer et al., 1994) provides evidence for H_3 -receptors regulating secretory mechanisms in nonneuronal cells. This observation suggests that H_3 -receptors may also be present in gastric mast cells or enterochromaffin cells and exert an inhibitory influence on histamine release and gastric acid secretion. Consistent with this suggestion, H_3 -receptor activation has been shown to inhibit gastric acid secretion in conscious dogs (Soldani et al., 1993). An autoregulation of histamine synthesis by histamine H_3 -receptors has also been reported in isolated rabbit fundic mucosal cells (Hollande et al., 1993).

 H_3 -receptors have been shown to relax rabbit middle cerebral artery via an endothelium-dependent mechanism involving both nitric oxide and prostanoid release (Ea Kim and Oudart, 1988; Ea Kim et al., 1992). Finally, there is a report that H_3 -receptor activation can stimulate adrenocorticotropic hormone release from the pituitary cell line AtT-20 (Clark et al., 1992)

PHARMACOLOGICAL REVIEW

B. H_3 -Receptor Selective Ligands

The initial characterization of the H_3 -receptor made use of the relative high affinity of the agonists N^{α} -methylhistamine and histamine for the H_3 -receptor compared with the H₁- and H₂-receptors together with the H_3 -antagonist properties of impromidine (H₂-agonist), burimamide (H₂-antagonist), and betahistine (H₁-agonist) (Arrang et al., 1983, 1985a). Since then, several selective ligands (both agonists and antagonists) have been developed that show little effect on H₁- and H₂receptors. The first selective H_3 -agonist was R-(α)-methylhistamine (fig. 2), which capitalized on the marked stereoselectivity of agonist binding to the H_3 -receptor compared with that to the other histamine receptors (Arrang et al., 1985c). Thus, R-(α)-methylhistamine is two orders of magnitude more potent as an H_3 -agonist than the corresponding S-isomer (table 2). $R-\alpha_1S-\beta$ -dimethylhistamine showed slightly higher potency and even higher selectivity (Lipp et al., 1992). Imetit [S-[2-4(5)imidazolylethylisothiourea] is a highly selective, full H_3 agonist that appears to be more potent than $R-(\alpha)$ -methylhistamine (table 2; Garbarg et al., 1992; Howson et al., 1992; Van der Goot et al., 1992). Both $R(\alpha)$ -methylhistamine and imetit have been shown to be active in vivo at low doses (Arrang et al., 1987a; Garbarg et al., 1992). Azomethine derivatives of $R-(\alpha)$ -methylhistamine were prepared as lipophilic prodrugs to improve the bioavailability of the hydrophilic drug, particularly its entry into the brain (Krause et al., 1995). Immepip is another potent H_3 -agonist that has been developed from histamine by extending the alkyl side chain to four methylene groups and incorporating the amino function within a piperidine ring (table 2; Vollinga et al., 1994). Most recently, the H_3 -agonist potency of a cyclic, conformationally restricted analogue of histamine (immepyr) has been reported (Shih et al., 1995). This compound has been resolved and the (+)-immepyr shown to have an H_3 -binding affinity ($K_i = 2.8 \text{ nM}$) one order of magnitude higher than the corresponding (-)-isomer (Shih et al., 1995). In guinea pig ileum, however, (+)-immepyr was one order of magnitude less potent $(pD_2 7.1)$ than R-(α)-methylhistamine $(pD_2 8.2)$ as an H_3 -agonist (Shih et al., 1995).

Thioperamide was the first potent and selective H_3 receptor antagonist to be described (Arrang et al., 1987). This compound appears to act as a competitive antagonist in most functional assays of H_3 -receptor activity (Arrang et al., 1987; Hew et al., 1990; Menkveld and Timmerman, 1990), although Clark and Hill (1995) have suggested that it may possess inverse agonist properties. More recently, several other potent H_3 -antagonists have been described (table 3; fig. 7), including clobenpropit (Kathman et al., 1993), iodophenpropit (Jansen et al., 1992), GR175737 (Clitherow et al., 1996), iodoproxyfan (Ligneau et al., 1994; Schlicker et al., 1996), impentamine (Vollinga et al., 1995; Leurs et al., 1996), ethers (Ganellin et al., 1996; Stark et al., 1996a), and carbamates (Stark et al., 1996b). These compounds have initiated some further discussion regarding potential H_3 receptor subtypes. Thus, iodoproxyfan behaves as a partial agonist in both guinea pig ileum and mouse cerebral cortical slices, whereas its noniodinated analogue only exhibits slight agonist activity in the mouse brain preparation (Schlicker et al., 1996). In guinea pig ileum, the noniodinated analogue of iodoproxyfan is a pure antagonist (pA $_2$ 7.12; Schlicker et al., 1996). These observations point to differences in receptor structure in the two preparations (perhaps species homologues?), but they could equally well be accommodated by differences in the efficiency of H_3 -receptor-effector coupling between the two tissues. A similar observation has been made with a series of homologues of histamine in which the ethylene side chain was modified (Leurs et al., 1996). Lengthening the side chain of histamine from two to five methylene groups results in the highly selective H_3 antagonist impentamine, which is equipotent with thioperamide as a competitive antagonist in guinea pig jejunum (table 3; Vollinga et al., 1995). However, in mouse brain cerebral cortical slices, impentamine (like iodoproxyfan) exhibits partial agonist activity (Leurs et al., 1996). At the present time, differences in receptor-effector coupling (and hence H_3 -receptor reserve) between mouse brain and guinea pig small intestine provide the simplest explanation for these observations.

Although many of the H_3 -selective ligands have been fully characterized in terms of selectivity for each of the three histamine receptors, it is worth stressing that the evaluation of H_3 -receptor ligands against other receptor systems is more limited. This needs to be borne in mind, particularly, when considering the in vivo use of these compounds. For example, iodophenpropit (K_i 11 nM) and thioperamide (K_i 120 nM) have both been shown to interact with 5-HT₃-receptors (Leurs et al., 1995c), whereas iodoproxyfan did not (Schlicker et al., 1995).

C. Receptor Structure

Structural information on the histamine H_3 -receptor is very limited, primarily because of a lack of success in cloning the H_3 -receptor cDNA. At the present time, there are only two reports of H_3 -receptor purification studies. Using [³H]histamine as a radioligand, Zweig et al. (1992) have reported the solubilization of an H_3 receptor protein from bovine whole brain. Size-exclusion chromatography has revealed an apparent molecular mass of 220 kDa (Zweig et al., 1992). However, because the solubilized receptor retained its guanine nucleotide sensitivity, it is likely that the molecular mass of 220 kDa represents a complex of receptor, G-protein, and digitonin (Zweig et al., 1992). Cherifi et al. (1992) have reported the solubilization (with Triton X-100) and purification of the H_3 -receptor protein from the human gastric tumoral cell line HGT-1. After gel filtration and sepharose-thioperamide affinity chromatography, protein has been purified with a molecular mass of approx-

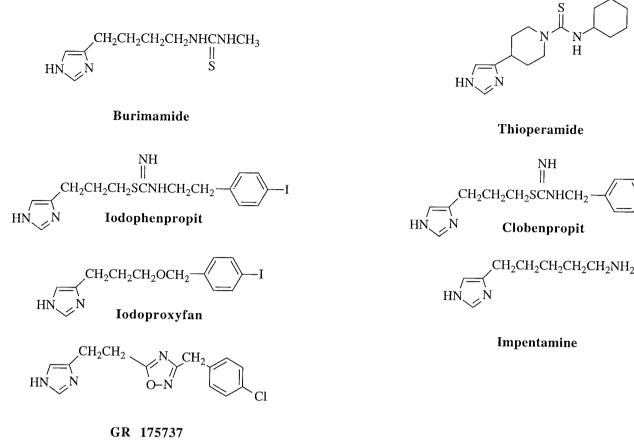


FIG. 7. Histamine H_3 -receptor antagonists.

imately 70 kDa (Cherifi et al., 1992). However, it remains to be established whether this protein is the histamine H_3 -receptor.

D. Signal Transduction Mechanisms

The signal transduction pathways used by the histamine H_3 -receptor remain largely subject to speculation, but there is increasing evidence to suggest that this receptor belongs to the superfamily of G-protein-coupled receptors. Evidence for this has largely been obtained from ligand-binding studies involving the modulation by guanine nucleotides of H_3 -agonist binding (Arrang et al., 1990; West et al., 1990; Kilpatrick and Michel, 1991; Zweig et al., 1992; Clark and Hill, 1995) and of H_3 -agonist inhibition of ³H-antagonist binding (Jansen et al., 1992, 1994; Ligneau et al., 1994). The most direct evidence for a functional H_3 -receptor-G-protein linkage has come from studies of $[^{35}S]GTP\gamma S$ binding to rat cerebral cortical membranes (Clark and Hill, 1996). In the presence of H_1 - and H_2 -receptor antagonists (0.1 μ M mepyramine and 10 μ M tiotidine), both R- α -methylhistamine and N^{α} -methylhistamine produced a concentrationdependent stimulation of $[^{35}S]GTP\gamma S$ binding $(EC_{50} = 0.4)$ and 0.2 nm, respectively) in rat cerebral cortical membranes (Clark and Hill, 1996). Furthermore, this response was abolished by pretreatment of membranes with pertussis toxin, implying a direct coupling to a G_i or G_o protein (Clark and Hill, 1996). Evidence for an involvement of pertussis toxin-sensitive G-proteins in the response to H_3 -receptor stimulation has also come from studies of histamine H_3 -receptor signaling in human and guinea pig heart (Endou et al., 1994; Imamura et al., 1995). In these tissues, histamine H_3 -receptor–stimulation seems to lead to an inhibition of N-type Ca²⁺ channels responsible for voltage-dependent release of noradrenaline (Endou et al., 1995).

Very little is known about the intracellular signal transduction pathways initiated by histamine H_3 -receptor activation. Several research groups have failed to observe an inhibition of adenylyl cyclase activity in different tissues and cells (Garbarg et al., 1989; Schlicker et al., 1991; Cherifi et al., 1992), which might indicate that H_3 -receptors preferentially couple to G_o proteins. There is one interesting report of a negative coupling to phospholipase C in the HGT-1 gastric tumor cell line (Cherifi et al., 1992), but this observation needs confirmation by other research.

V. Other Responses to Histamine

A. Potentiation of Responses to N-Methyl-D-Aspartate

Studies in hippocampal cell cultures, acutely dissociated neurons, and *Xenopus* oocytes expressing the re-

CI

HARMACOLOGICAL REVIEW

spet

combinant N-methyl-D-aspartate (NMDA) receptor subunits NR2B and NR1 have shown that histamine is able to enhance NMDA-activated currents, independently of the known histamine receptors, via a mechanism that probably involves the polyamine-binding site on the NMDA-receptor complex (Bekkers, 1993; Vorobjev et al., 1993; Williams, 1994; Saysbasili et al., 1995). Histamine and the polyamines spermine and spermidine have also been shown to enhance glutamate toxicity in human NT2-N neurons (Munir et al., 1996). Interestingly, attempts to demonstrate a similar effect of histamine on NMDA-induced currents in rat hippocampal slices, or outside-out patches pulled from the somas of these cells, were without success (Bekkers et al., 1996). However, two studies using conventional and whole cell recording of neurons in the CA1 region of slices of rat hippocampus concluded that the modulation of NMDA-mediated svnaptic currents was dependent upon pH (Savsbasili et al., 1995; Janovsky et al., 1995). Thus, at low pH (7.2), histamine enhanced synaptic currents, whereas at pH 7.6 it reduced them. Interestingly, at physiological pH (7.4), no significant action of histamine was seen (Saysbasili et al., 1995).

B. A Role as an Intracellular Messenger?

Although most actions of histamine can be attributed to an extracellular action, there are reports that histamine may have intracellular actions. The activity of the enzyme, histidine decarboxylase, which catalyzes the formation of histamine from histidine, has been observed to be high in several tissues undergoing rapid growth or repair (Ishikawa et al., 1970; Kahlson and Rosengren, 1971; Watanabe et al., 1981; Bartholeyns and Bouclier, 1984; Bartholeyns and Fozard, 1985). These observations have led to the proposal that newly synthesized (nascent) histamine may have a role in cellular proliferation, perhaps via an intracellular site. Some evidence has been accumulated that intracellular histamine levels (or the activity of histidine decarboxylase) can be regulated by tumor-promoting phorbol esters (Saxena et al., 1989). Furthermore, Brandes and colleagues (Saxena et al., 1989; Brandes et al., 1990, 1992) have suggested that N, N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine (DPPE) might be an inhibitor of a specific intracellular histamine receptor (H_{IC}). However, at the present time, the evidence in favor of an intracellular histamine receptor has not been generally accepted, and alternative possibilities need to be explored. For example, the direct effects of histamine, or its analogues, on polyamine sites (Vorobjev et al., 1993; Bekkers, 1993) and heterotrimeric G-proteins (Hagelüken et al., 1995; Seifert et al., 1994) could explain many of the observations to date.

REFERENCES

ACEVES, J., MARISCHAL, S., MORRISON, K. E., AND YOUNG, J. M.: The binding of doxepin to histamine H₁-receptors in guinea-pig and rat brain. Br. J. Pharmacol. 84: 417–424, 1985.

- AHN, H. S., AND BARNETT, A.: Selective displacement of ³H-mepyramine from peripheral vs central nervous system receptors by loratadine, a non-sedative antihistamine. Eur. J. Pharmacol. **127**: 153–155, 1986.
- AL-GADI, M., AND HILL, S. J.: Characterization of histamine receptors mediating the stimulation of cyclic AMP accumulation in rabbit cerebral cortical slices. Br. J. Pharmacol. 85: 877–888, 1985.
- AL-GADI, M., AND HILL, S. J.: The role of calcium in the cyclic AMP response to histamine in rabbit cerebral cortical slices. Br. J. Pharmacol. 91: 213–222, 1987.
- ALVES-RODRIGUES, A., LEURS, R., TIN-SENG WU, PRELL, G. D., FOGED, C., AND TIMMERMAN, H.: ³H-Thioperamide as a radioligand for the histamine H₃receptor in rat cerebral cortex. Br. J. Pharmacol. **118**: 2045–2052, 1996.
- ARIAS-MONTANO, J. A., AND YOUNG, J. M.: Characteristics of histamine H₁receptors on HeLa cells. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 245: 291-295, 1993.
- ARRANG, J. M., DEVAUX, B., CHODKIEWICZ, J. P., AND SCHWARTZ, J. C.: H₃receptors control histamine release in human brain. J. Neurochem. 51: 105-108, 1988a.
- ARRANG, J. M., DEFONTAINE, N., AND SCHWARTZ, J. C.: Phencyclidine blocks histamine H₃-receptors in rat brain. Eur. J. Pharmacol. 157: 31–39, 1988b.
- ARRANG, J. M., DRUTEL, G., AND SCHWARTZ, J. C.: Characterization of histamine H₃-receptors regulating acetylcholine release in rat entorhinal cortex. Br. J. Pharmacol. 114: 1518–1522, 1995.
- ARRANG, J. M., GARBARG, M., LANCELOT, J.-C., LECOMTE, J.-M., POLLARD, H., ROBBA, M., SCHUNACK, W., AND SCHWARTZ, J.-C.: Highly potent and selective ligands for histamine. H₃-receptors. Nature (Lond.) **327**: 117–123, 1987a.
- ARRANG, J. M., GARBARG, M., QUACH, T. T., TUONG, M. D., YERAMIAN, E., AND SCHWARTZ, J. C.: Actions of betahistine at histamine receptors in the brain. Eur. J. Pharmacol. 111: 73–84, 1985a.
- ARRANG, J. M., GARBARG, M., AND SCHWARTZ, J.-C.: Auto-inhibition of brain histamine release mediated by a novel class $({\cal H}_3)$ of histamine receptor. Nature (Lond.) 302: 1–5, 1983.
- ARRANG, J. M., GARBARG, M., AND SCHWARTZ, J.-C.: Autoinhibition of histamine synthesis mediated by presynaptic H_3 -receptors. Neuroscience 23: 149–157, 1987b.
- ARRANG, J. M., GARBARG, M., AND SCHWARTZ, J. C.: Autoregulation of histamine release in brain by pre-synaptic H₃-receptors. Neuroscience 15: 553– 562, 1985b.
- ARRANG, J. M., ROY, J., MORGAT, J. L., SCHUNACK, W., AND SCHWARTZ, J. C.: Histamine H₃-receptor binding sites in rat brain membranes: modulations by guanine nucleotides and divalent cations. Eur. J. Pharmacol. 188: 219– 227, 1990.
- ARRANG, J. M., SCHWARTZ, J. C., AND SCHUNACK, W.: Stereoselectivity of the histamine H₃-presynaptic autoreceptor. Eur. J. Pharmacol. 117: 109–114, 1985c.
- ARUNLAKSHANA, O., AND SCHILD, H. O.: Some quantitative uses of drug antagonists. Br. J. Pharmacol. 14: 48–58, 1959.
- ASH, A. S. F., AND SCHILD, H. O.: Receptors mediating some actions of histamine. Br. J. Pharmacol. 27: 427-439, 1966.
- ASHFORD, C. A., HELLER, H., AND SMART, G. A.: The action of histamine on hydrochloric acid and pepsin secretion in man. Br. J. Pharmacol. 4: 153-161, 1949.
- BAILEY, S. J., LIPPE, I. T., AND HOLZER, P.: Effect of the tachykinin antagonist [D-Pro⁴, D-Trp^{7,9,10}] substance P-(4-11) on tachykinin- and histamine-induced inositol phosphate generation in intestinal smooth muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. **335**: 296–300, 1987.
- BARGER, G., AND DALE, H. H.: Chemical structure and sympathomimetic action of amines. J. Physiol. (Lond.) 41: 19–59, 1910.
- BARTHOLEYNS, J., AND BOUCLIER, M.: Involvement of histamine in growth of mouse and rat tumors: antitumoral properties of monofluoromethylhistidine, an enzyme-activated irreversible inhibitor of histidine decarboxylase. Cancer Res. 44: 639-645, 1984.
- BARTHOLEYNS, J., AND FOZARD, J. R.: Role of histamine in tumor development. Trends Pharmacol. Sci. 6: 123–125, 1985.
- BATZRI, S., HARMON, J. W., AND THOMPSON, W. F.: Interaction of histamine with gastric mucosal cells: effect of histamine H₂-antagonists on binding and biological response. Mol. Pharmacol. 22: 41–47, 1982.
- BEKKERS, J. M.: Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science (Wash. DC) 261: 104-106, 1993.
- BEKKERS, J. M., VIDOVIC, M., AND YMER, S.: Differential effects of histamine on the N-methyl-D-aspartate channel in hippocampal slices and cultures. Neuroscience 72: 669-677, 1996.
- BIRDSALL, N. J. M.: Cloning and structure: function of the H₂ histamine receptor. Trends Pharmacol. Sci. 12: 9-10, 1991.
- BLACK, J. W.: Nobel lecture: drugs from emasculated hormones—the principle of syntopic antagonism. In Vitro Cell. Dev. Biol. 25: 311–320, 1989.
- BLACK, J. W., DUNCAN, W. A. M., DURANT, C. J., GANELLIN, C. R., AND PARSONS, E. M.: Definition and antagonism of histamine H₂-receptors. Nature (Lond.) 236: 385–390, 1972.
- BLACK, J. W., DURANT, G. J., EMMETT, J. C., AND GANELLIN, C. R.: Sulphurmethylene isosterism in the development of metiamide, a new histamine H₂-receptor antagonist. Nature (Lond.) 248: 65-67, 1974.
- BLACK, J. W., AND GANELLIN, C. R.: Naming of substituted histamines. Experientia 30: 111–113, 1974.
- BLACK, J. W., AND SHANKLEY, N. P.: The isolated stomach preparation of the

- BOLTON, T. B.: Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. **59:** 606–718, 1979.
- BOLTON, T. B., CLARK, J. P., KITAMURA, K., AND LANG, R. J.: Evidence that histamine and carbachol may open the same ion channels in longitudinal smooth muscle of guinea-pig ileum. J. Physiol. (Lond.) **320**: 363–379, 1981.
- BOLTON, T. B., AND LIM, S. P.: Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine. J. Physiol. (Lond.) 409: 385-401, 1989.
- BOMMER, M., LIEBISCH, D., KLEY, N., HERZ, A., AND NOBLE, E.: Histamine affects release and biosynthesis of opioid peptides primarily via H₁-receptors in bovine chromaffin cells. J. Neurochem. 49: 1688–1696, 1987.
- BOURNE, H. R., MELMON, K. L., AND LICHTENSTEIN, L. M.: Histamine augments leukocyte cyclic AMP and blocks antigenic histamine release. Science 173: 743-745, 1971.
- BOUTHENET, M. L., RUAT, M., SALÈS, N., AND SCHWARTZ, J.-C.: A detailed mapping of histamine H_1 -receptors in guinea pig central nervous system established by autoradiography with [125 i]iodobolpyramine. Neuroscience **26:** 553–600, 1988.
- BOVET, D.: Introduction to antihistamine agents and antergan derivatives. Ann. N. Y. Acad. Sci. **50:** 1089–1126, 1950.
- BOVET, D., AND STAUB, A.: Action protectrice des éthers phénoliques au cours de l'intoxication histaminique. C. R. Seances Soc. Biol. Fil. **124**: 547–549, 1936.
- BRADSHAW, J., BRITTAIN, R. T., CLITHEROW, J. W., DALY, M. J., JACK, D., PRICE, B. J., AND STABLES, R.: Ranitidine, a new potent selective H₂-receptor antagonist. (Abstract) Br. J. Pharmacol. **66**: 464P, 1979.0.
- BRANDES, L. J., BOGDANOVIC, R. P., TONG, J., DAVIE, J. R., AND LA BELLA, F. S.: Intracellular histamine and liver regeneration: high affinity binding of histamine to chromatin, low affinity binding to matrix, and depletion of a nuclear storage pool following partial hepatectomy. Biochem. Biophys. Res. Commun. 184: 840-847, 1992.BRANDES, L. J., LA BELLA, F. S., GLAVIN, G. B., PARASKEVAS, F., SAXENA, S. P.,
- BRANDES, L. J., LA BELLA, F. S., GLAVIN, G. B., PARASKEVAS, F., SAXENA, S. P., MCNICOL, A., AND GERRARD, J. M.: Histamine as an intracellular messenger. Biochem. Pharmacol. 40: 1677–1681, 1990.
- BRIMBLECOMBE, R. W., DUNCAN, W. A. M., DURANT, G. J., EMMETT, J. C., GANELLIN, C. R., AND PARSONS, M. E.: Cimetidine: a non-thiourea H₂receptor antagonist. J. Int. Med. Res. 3: 86–92, 1975.
- BRISTOW, D. R., HARE, J. R., HEARN, J. R., AND MARTIN, L. E.: Radioligand binding studies using ³H-cimetidine and ³H-ranitidine. Br. J. Pharmacol. 72: 547P–548P, 1981.
- BROTHERTON, A. F. A.: Induction of prostacyclin biosynthesis is closely associated with increased guanosine 3',5'-cyclic monophosphate accumulation in cultured human endothelium. J. Clin. Invest. 78: 1253–1260, 1986.
- BROWN, R., FEDOROV, N., HAAS, H. L., AND REYMANN, K.: Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34: 181–190, 1995.
- BROWN, E. A., GRIFFITHS, R., HARVEY, C. A., AND OWEN, D. A. A.: Pharmacological studies with SK and F 93944 (temelastine), a novel histamine H₁receptor antagonist with negligible ability to penetrate the central nervous system. Br. J. Pharmacol. 87: 569–578, 1986.
- BROWN, J. D., O'SHAUGHNESSY, C. T., KILPATRICK, G. J., SCOPES, D. I. C., BESWICK, P., CLITHEROW, J. W., AND BARNES, J. C.: Characterisation of the specific binding of the histamine H_3 -receptor antagonist radioligand ³H-GR16820. Br. J. Pharmacol. **114**: 344P, 1995.
- BÜLBRING, E., AND BURNSTOCK, G.: Membrane potential changes associated with tachyphylaxis and potentiation of the response to stimulating drugs in smooth muscle. Br. J. Pharmacol. Chemother. 15: 611-624, 1960.
- BUNN, S. J., SIM, A. T. R., HERD, L. M., AUSTIN, L. M., AND DUNKLING, P. R.: Tyrosine-hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of intracellular Ca²⁺ in the histamine H₁-receptor-stimulated phosphorylation of Ser (8), Ser (19), Ser (31) and Ser (40). J. Neurochem. **64**: 1370–1378, 1995.
- BURGAUD, J. L., AND OUDART, N.: N^G-Nitro-L-arginine methyl ester inhibits the effect of an H₃-histaminergic receptor agonist on Nanc contraction in guinea-pig perfused bronchioles. J. Pharm. Pharmacol. 46: 153–155, 1994.
- BURKARD, W. P.: Histamine H₂-receptor binding with ³H-cimetidine in brain. Eur. J. Pharmacol. **50**: 449-450, 1978.
- BUSCHAUER, A.: Synthesis and in vitro pharmacology of arpromidine and related phenyl(pyridylalkyl)guanidines, a potential new class of positive inotropic drugs. J. Med. Chem. 32: 1963–1970, 1989.
- BUSCHAUER, A., AND BAUMANN, G.: Structure-activity relationships of histamine H₂-agonists, a new class of positive inotropic drugs. Agents Actions Suppl. 33: 231-256, 1991.
- BUSCHAUER, A., LACHENMAYR, F., AND SCHUNACK, W.: Synthesis and histamine H₂-receptor activity of heterocyclic impromidine analogues. Pharmazie 47: 86-91, 1992.
- BUSSE, W. W., AND SOSMAN, J.: Decreased H₂ histamine response of granulocytes of asthmatic patients. J. Clin. Invest. **59**: 1080–1087, 1977.
- CALCUTT, C. R., GANELLIN, C. R., JACKSON, B, LEIGH, B. K., OWEN, D. A. A., AND SMITH, I. R.: Evidence for low brain penetration by the H₁ receptor antagonist temelastine (SK and F 93944). Eur. J. Pharmacol. **133**: 65–74, 1987.
- CALCUTT, C. R., GANELLIN, C. R., GRIFFITHS, R., LEIGH, B. K., MAGUIRE, J. P., MITCHELL, R. C., MYLEK, M. E., PARSONS, M. E., SMITH, I. R., AND YOUNG,

D. C.: Zolantidine (SKF 95282) is a potent selective brain-penetrating histamine H_2 -receptor antagonist. Br. J. Pharmacol. **93:** 69–78, 1988.

- CARTER, T. D., HALLAM, T. J., CUSACK, N. J., AND PEARSON, J. D.: Regulation of P_{2y}-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br. J. Pharmacol. **95:** 1181– 1190, 1988.
- CASALE, T. B., RODBARD, D., AND KALINER, M.: Characterization of histamine H₁-receptors on human peripheral lung. Biochem. Pharmacol. 34: 3285– 3292, 1985.
- CASY, A. F.: Chemistry of anti-H₁ histamine antagonists. In Handbook of Experimental Pharmacology, ed. by M. Rocha e Silva, vol. 18, part 2, pp. 175-214, Springer-Verlag, Berlin, 1977.
- CAVANAGH, R. L., USAKEWICZ, J. J., AND BUYNISKI, J. P.: A comparison of some of the pharmacological properties of etintidine, a new histamine H₂-receptor antagonist, with those of cimetidine, ranitidine. J. Pharmacol. Exp. Ther. 224: 171–179, 1983.
- CHANG, R. S. L., TRAN, V. T., AND SNYDER, S. H.: Characteristics of histamine H₁-receptors in peripheral tissues labelled with ³H-mepyramine. J. Pharmacol. Exp. Ther. **209**: 437–442, 1979a.
- CHANG, R. S. L., TRAN, V. T., AND SNYDER, S. H.: Heterogeneity of histamine H₁-receptors: species variations in [³H] mepyramine binding of brain membranes. J. Neurochem. **32**: 1653–1663, 1979b.
- CHERIFI, Y., PIGEON, C., LE ROMANCER, M., BADO, A., REYL-DESMARS, F, AND LEWIN, M. J. M.: Purification of histamine H_3 receptor negatively coupled to phosphoinositide turnover in the human gastric cell line HGT1. J. Biol. Chem. **267**: 25315–25320, 1992.
- CHEW, C. S.: Cholecystokinin, carbachol, gastrin, histamine and forskolin increase [Ca²⁺], in gastric glands. Am. J. Physiol. **250**: G814-G823, 1986.
- CHEW, C. S.: Differential effects of extracellular calcium removal and nonspecific effects of Ca²⁺ antagonists on acid secretory activity in isolated gastric glands. Biochim. Biophys. Acta **846**: 370–378, 1985.
- CHEW, C. S., HERSEY, S. J., SACHS, G., AND BERGLINDH, T.: Histamine responsiveness of isolated gastric glands. Am. J. Physiol. 238: G312–G320, 1980.
- CHEW, C. S., AND PETROPOULOS, A. C.: Thapsigargin potentiates histaminestimulated HCl secretion in gastric parietal cells but does not mimic cholinergic responses. Cell Regul. 2: 27-39, 1991.
- CHRISTIAN, E. P., UNDEM, B. J., AND WEINREICH, D.: Endogenous histamine excites neurones in the guinea pig superior cervical ganglion in vitro. J. Physiol. **409**: 297–312, 1989.
- CLAPHAM, J., AND KILPATRICK, G. J.: Histamine H_3 receptors modulate the release of [³H]-acetylcholine from slices of rat entorhinal cortex: evidence for the possible existence of H_3 receptor subtypes. Br. J. Pharmacol. 107: 919–923, 1992.
- CLARK, E. A., AND HILL, S. J.: Differential effect of sodium ions and guanine nucleotides on the binding of thioperamide and clobenpropit to histamine H_3 -receptors in rat cerebral cortical membranes. Br. J. Pharmacol. 114: 357–362, 1995.
- CLARK, E. A., AND HILL, S. J.: Sensitivity of histamine H_3 receptor agoniststimulated [³⁵S]-GTP_γS binding to pertussis toxin. Eur. J. Pharmacol. **296**: 223–225, 1996.
- CLARK, M. A., KORTE, A., MYERS, J., AND EGAN, R. W.: High affinity histamine H_3 receptors regulate ACTH release by AtT-20 cells. Eur. J. Pharmacol. **210**: 31–35, 1992.
- CLARO, E., GARCIA, A., AND PICACOSTA, F.: Histamine-stimulated phosphoinositide hydrolysis in developing rat brain. Mol. Pharmacol. 32: 384–390, 1987.
- CLITHEROW, J. W., BESWICK, P., IRVING, W. J., SCOPES, D. I. C., BARNES, J. C., CLAPHAM, J., BROWN, J. D., EVANS, D. J., AND HAYES, A. G.: Novel 1,2,4-oxadiazoles as potent and selective histamine H_3 -receptor antagonists. Bioorg. & Med. Chem. Lett. 6: 833–838, 1996.
- COHEN, A. F., HAMILTON, M., PHILIPSON, P., AND PECK, A. W.: The acute effects of acrivastine (BW 825 C), a new antihistamine, compared with triprolidine on measures of central nervous system performance and subjective effects. Clin. Pharmacol. Ther. **38**: 381–386, 1985.
- COOPER, D. G., YOUNG, R. C., DURANT, G. J., AND GANELLIN, C. R.: Histamine receptors. *In* Comprehensive Medicinal Chemistry, ed. by J. C. Emmett, vol. 3, pp. 323–421, Pergamon Press, Oxford, 1990.
- DALE, H. H., AND LAIDLAW, P. P.: The physiological action of β-imidazolylethylamine. J. Physiol. (Lond.) 41: 318-344, 1910.
- DALY, J. W.: Cyclic nucleotides in the nervous system. Raven, New York, 1977.
 DE BACKER, M. D., GOMMEREN, W., MOEREELS, H., NOBELS, G., VAN GOMPEL, P., LEYSEN, J. E., AND LUYTEN, W. H. M. L.: Genomic clonning, heterologous expression and pharmacological characterization of a human histamine H₁-receptor. Biochem. Biophys. Res. Commun. **197**: 1601–1608, 1993.
- DELAUNOIS, A., GUSTIN, P., GARBARG, M., AND ANSAY, M.: Modulation of acetylcholine, capsaicin and substance P effects by histamine H₃ receptors in isolated perfused rabbit lungs. Eur. J. Pharmacol. 277: 243–250, 1995.
- DELVALLE, J., GANTZ, I., WANG, L. D., GUO, Y. J., MUNZERT, G., TASHIRO, T., KONDA, Y., AND YAMADA, T.: Construction of a novel bifunctional biogenic amine receptor via 2 point mutations of the H₂-histamine receptor. Mol. Med. 1: 280–286, 1995.
- DELVALLE, J., TSUNODA, Y., WILLIAMS, J. A., AND YAMADA, T.: Regulation of $[Ca^{2+}]_i$ by secretagogue stimulation of canine gastric parietal cells. Am. J. Physiol. **262**: G420–G426, 1992a.
- DELVALLE, J., WANG, L., GANTZ, I, AND YAMADA, T.: Characterization of H₂

HARM REV

REV

ARMACOLOGI

spet

histamine receptor: linkage to both a denylate cyclase and $\rm [Ca^{2+}]_i$ signaling systems. Am. J. Physiol. 263: G967–G972, 1992b.

- DICKENSON, J. M., AND HILL, S. J.: Histamine H₁-receptor-mediated calcium influx in DDT₁ MF-2 cells. Biochem. J. 284: 425–431, 1992.
- DICKENSON, J. M., AND HILL, S. J.: Characteristics of ³H-mepyramine binding in DDT₁ MF₂ cells: evidence for high binding to a functional histamine H₁ receptor. Eur. J. Pharmacol. Mol. Pharmacol. Sect. **268**: 257–262, 1994.
- DONALDSON, J., BROWN, A. M., AND HILL, S. J.: Temporal changes in the calcium dependence of the histamine H₁-receptor-stimulation of the cyclic AMP accumulation in guinea-pig cerebral cortex. Br. J. Pharmacol. 98: 1365-1375, 1989.
- DONALDSON, J., AND HILL, S. J.: Histamine-induced inositol phospholipid breakdown in the longitudinal smooth muscle of guinea-pig ileum. Br. J. Pharmacol. 85: 499-512, 1985.
- DONALDSON, J., AND HILL, S. J.: Enhancement of histamine H₁-receptor agonist activity by 1,4-dithiothreitol in guinea-pig cerebellum and cerebral cortex. J. Neurochem. 47: 1476–1482, 1986a.
- DONALDSON, J., AND HILL, S. J.: Histamine-induced hydrolysis of polyphosphoinositides in guinea-pig ileum and brain. Eur. J. Pharmacol. 124: 255– 265, 1986b.
- DONALDSON, J., AND HILL, S. J.: Selective enhancement of histamine H₁receptor responses in guinea-pig ileal smooth muscle by 1,4-dithiothreitol. Br. J. Pharmacol. 87: 191-199, 1986c.
- DONALDSON, J., HILL, S. J., AND BROWN, A. M.: Kinetic studies on the mechanism by which histamine H_1 receptors potentiate cyclic AMP accumulation in guinea-pig cerebral cortical slices. Mol. Pharmacol. **33:** 626–633, 1988.
- DONETTI, A., CEREDA, E., BELLORA, E., GALLAZZI, A., BAZZANO, C., VANONI, P., DEL SOLDATO, P., MICHELETTI, R., PAGANO, F., AND GIACHETTI, A.: Imidazolylphenyl formamidines: a structurally novel class of potent histamine H₂-receptor antagonists. J. Med. Chem. **27:** 380–386, 1984.
- DUNCAN, P. G., BRINK, C., ADOLPHSON, R. L., AND DOUGLAS, J. S.: Cyclic nucleotides and contraction/relaxation in airway muscle: H₁ and H₂ agonists and antagonists. J. Pharmacol. Exp. Ther. **215**: 434-442, 1980.
- DURANT, G. J., GANELLIN, C. R., AND PARSONS, M. E.: Dimaprit, [S-3-(n, N-dimethylamino)propylisothioureal, a highly specific histamine H₂-receptor agonist: part 2. Agents Actions 7: 39–43, 1977.
- DURANT, G. J., DUNCAN, W. A. M., GANELLIN, C. R., PARSONS, M. E., BLAKE-MORE, R. C., AND RASMUSSEN, A. C.: Impromidine (SKandF 92676) is a very potent and specific agonist for histamine H₂-receptors. Nature (Lond.) 276: 403–405, 1978.
- EA KIM, L., AND OUDART, N.: A highly potent and selective H_3 agonist relaxes rabbit middle cerebral artery, in vitro. Eur. J. Pharmacol. **150**: 393–396, 1988.
- EA KIM, L., JAVELLAUD, J., AND OUDART, N.: Endothelium-dependent relaxation of rabbit middle cerebral artery to a histamine H_3 -agonist is reduced by inhibitors of nitric oxide and prostacyclin synthesis. Br. J. Pharmacol. **105:** 103–106, 1992.
- EDVINSSON, L., GROSS, P. M., AND MOHAMED, A.: Characterization of histamine receptors in cat cerebral arteries in vitro and in situ. J. Pharmacol. Exp. Ther. **225**: 168–175, 1983.
- ELZ, S., GERHARD, G., AND SCHUNACK, W.: Histamine analogues: 32nd communication—synthesis and pharmacology of sopromidine, a potent and stere-oselective isomer of the achiral $\rm H_2$ -agonist impromidine. Eur. J. Med. Chem. **24:** 259–262, 1989.
- EMMELIN, N., AND MUREN, A.: Effects of antihistamine compounds on the adrenaline liberation from supra renals. Acta Physiol. Scand. 17: 345–355, 1949.
- ENDOU, M., POLI, E., AND LEVI, R.: Histamine H₃-receptor signalling in the heart: possible involvement of G_i/G_o proteins and N-type Ca²⁺ channels. J. Pharmacol. Exp. Ther. **269**: 221–229, 1994.
- ERIKS, J. C., VAN DER GOOT, H., STERK, G. J., AND TIMMERMAN, H.: Histamine H₂-receptor agonists: Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4-and 5-(2-aminoethyl)thiazoles. J. Med. Chem. **35:** 3239–3246, 1992.
- EYRE, P., AND CHAND, N.: Histamine receptor mechanism of the lung. In Pharmacology of Histamine Receptors, ed. by C. R. Ganellin and M. E. Parsons, pp. 298-322, Wright, Bristol, England, 1982.
- FIGGE, J., LEONARD, P., AND RICHELSON, E.: Tricyclic antidepressants: potent blockade of histamine H₁ receptors of guinea pig ileum. Eur. J. Pharmacol. 58: 479-483, 1979.
- FOLKOW, B., HEGER, K., AND KAHLSON, G.: Observations on reactive hyperaemia as related to histamine, on drugs antagonising vasodilation induced by histamine and on vasodilator properties of adenosine triphosphate. Acta. Physiol. Scand. 15: 264–278, 1948.
- FOREMAN, J. C., NORRIS, D. B., RISING, T. J., AND WEBBER, S. E.: The binding of ³H-tiotidine to homogenates of guinea-pig lung parenchyma. Br. J. Pharmacol. 86: 475–482, 1985a.
- FOREMAN, J. C., RISING, T. J., AND WEBBER, S. E.: A study of the histamine H_2 -receptor mediating relaxation of the parenchymal lung strip preparation of the guinea-pig. Br. J. Pharmacol. **86**: 465–473, 1985b.
- FUJIMOTO, K., HORIO, Y., SUGAMA, K., ITO, S., LIU, Y. Q., AND FUKUI, H.: Genomic cloning of the rat histamine H₁ receptor. Biochem. Biophys. Res. Commun. **190**: 294–301, 1993.
- FUKUI, H., FUJIMOTO, K., MIZUGUCHI, H., SAKAMOTO, K., HORIO, Y., TAKAI, S.,

YAMADA, K., AND ITO, S.: Molecular cloning of the human H_1 -receptor gene. Biochem. Biophys. Res. Commun. **201:** 894–901, 1994.

- FUKUI, H., MIZUGUCHI, H., LUI, Y. Q., LEURS, R., KANGAWA, K., MATSUO, H., AND WADA, H.: Purification of ³H-mepyramine receptor from rat liver and its amino acid sequence homology with debrisoquine-4-hydroxylase cytochrome P-450. Eur. J. Pharmacol. **183**: 1727–1738, 1990.
- FUKUSHIMA, Y., OKA, Y., SAITOH, T., KATAGIRI, H., ASANO, T., MATSUHASHI, N., TAKATA, K., VAN BREDA, E., YAZAKI, Y., AND SUGANO, K.: Structural and functional analysis of the canine histamine H₂-receptor by site-directed mutagenesis: N-glycosylation is not vital for its action. Biochem. J. **310**: 553–558, 1995.
- GAJTKOWSKI, G. A., NORRIS, D. B., RISING, T. J., AND WOOD, T. P.: Specific binding of [³H]-tiotidine to histamine H₂-receptors in guinea pig cerebral cortex. Nature (Lond.) **304:** 65–67, 1983.
- GANELLIN, C. R.: Chemistry and structure-activity relationships of drugs acting at histamine receptors. *In* Pharmacology of Histamine Receptors, ed. by C. R. Ganellin and M. E. Parsons, pp. 10–102, Wright, Bristol, England, 1982.
- GANELLIN, C. R.: Pharmacochemistry of H₁ and H₂ receptors. In The Histamine Receptor, ed. by J. C. Schwartz, and H. Haas, pp. 1–56, Wiley-Liss, New York, 1992.
- GANELLIN, C. R.: Selectivity and the design of histamine H₂-receptor antagonists. J. Appl. Chem. Biotechnol. 28: 183–200, 1978.
- GANELLIN, C. R., FKYERAT, A., BANG-ANDERSEN, B., ATHMANI, S., TERTUIK, W., GARBANG, M., LIGNEAU, X., AND SCHWARTZ, J.-C.: A novel series of (Phenoxyalkyl) imidazoles as potent H3-receptor histamine antagonists. J. Med. Chem. 39: 3806–3813, 1996.
- GANELLIN, C. R., HOSSEINI, S. K., KHALAF, Y. S., TERTIUK, W., ARRANG, J.-M., GARBARG, M., LIGNEAU, X., AND SCHWARTZ, J.-C.: Design of potent nonthiourea H₃-receptor histamine antagonists. J. Med. Chem. **38**: 3342–3350, 1995.
- GANTZ, I., DELVALLE, J., WANG, L. D., TASHIRO, T., MUNZERT, G., GUO, Y. J., KONDA, Y., AND YAMADA, T.: Molecular basis for the interaction of histamine with the histamine-H₂ receptor. J. Biol. Chem. **267**: 20840–20843, 1992.
- GANTZ, I., MUNZERT, G., TASHIRO, T., SCHÄFFER, M., WANG, L., AND YAMADA, T.: Molecular cloning of the human histamine H_2 receptor. Biochem. Biophys. Res. Commun. **178**: 1386–1392, 1991a.
- GANTZ, I., SCHÄFFER, M., DEL VALLE, J., LOGSDON, C., CAMPBELL, V., UHLER, M., AND YAMADA, T.: Molecular cloning of a gene encoding the histamine H₂ receptor. Proc. Natl. Acad. Sci. USA 88: 429–433, 1991b.
- GARBARG, M., ARRANG, J. M., ROULEAU, A., LIGNEAU, X., DAM TRUNG TUONG, M., SCHWARTZ, J. C., AND GANELLIN, C. R.: S-[2-(4-imidazolyl)ethyl]isothiourea, a highly specific and potent histamine H₃.receptor agonist. J. Pharmacol. Exp. Ther. **263**: 304–310, 1992.
- GARBARG, M., AND SCHWARTZ, J. C.: Synergism between histamine H₁- and H₂-receptors in the cyclic AMP response in guinea-pig brain slices: effect of phorbol esters and calcium. Mol. Pharmacol. **33**: 38-43, 1988.
- GARBARG, M., TRUNG TUONG, M. D., GROS, C., AND SCHWARTZ, J. C.: Effect of histamine H_3 -receptor ligands on various biochemical indices of histaminergic neuron activity in rat brain. Eur. J. Pharmacol. **164:** 1–11, 1989.
- GENOVESE, A., GROSS, S. S., SAKUMA, I., AND LEVI, R.: Adenosine promotes histamine H₁-mediated negative chronotropic and inotropic effects on human atrial myocardium. J. Pharmacol. Exp. Ther. **247**: 844-849, 1988.
- GERBER, U., GREENE, R. W., MCCARLEY, R. W., AND HAAS, H. L.: Excitation of brain stem neurones by noradrenaline and histamine. J. Basic Clin. Physiol. Pharmacol. 1: 71–76, 1990.
- GESPACH, C., BOUHOURS, D., BOUHOURS, J. F., AND ROSSELIN, G.: Histamine interaction on surface recognition sites of H₂-type in parietal and nonparietal cells isolated from guinea-pig stomach. FEBS Lett. 149: 85–90, 1982.
- GREEN, J. P.: Histamine receptors in brain. Handb. Psychopharmacol. 17: 385–420, 1983.
- GREEN, J. P., JOHNSON, C. L., WEINSTEIN, H., AND MAAYANI, S.: Antagonism of histamine-activated adenylate cyclase in brain by d-lysergic acid diethylamide. Proc. Natl. Acad. Sci. USA 74: 5697–5701, 1977.
- GREEN, J. P., AND MAAYANI, S.: Nomenclature, classification and notation of receptors: 5-hydroxytryptamine receptors and binding sites as examples. *In* Perspectives on Receptor Classification: Receptor Biochemistry and Methodology, ed. by J. W. Black, D. H. Jenkinson, and V. P. Gerskowitch, vol. 6, pp. 237–267, Wiley-Liss, New York, 1987.
- GREEN, J. P., AND MAAYANI, S.: Tricyclic antidepressant drugs block histamine H₂ receptor in brain. Nature (Lond.) 260: 163–165, 1977.
- GREENE, R. W., AND HAAS, H. L.: Histamine action on dentate granule cells of the rat in vitro. Neuroscience 34: 299–303, 1989.
- GREGA, G. A.: Contractile elements in endothelial cells as potential targets for drug action. Trends Pharmacol. Sci. 7: 452–457, 1986.
- GRISWOLD, D. E., SALVATORE, A., BADGER, A. M., POSTE, G., AND HANNA, N.: Inhibition of T suppressor cell expression by histamine type 2 (H_2) receptor antagonists. J. Immunol. **132**: 3054–3057, 1984.
- GROSS, P. M., HARPER, A. M., AND TEASDALE, G. M.: Cerebral circulation and histamine: 1—participation of vascular H₁- and H₂-receptors in vasodilatory responses to carotid arterial infusion. J. Cereb. Blood Flow Metab. 1: 97– 108, 1981.
- GRUND, V. R., GOLDBERG, N. D., AND HUNNINGHAKE, D. B.: Histamine receptors in adipose tissue: involvement of cyclic adenosine monophosphate and

- GUO, Z. G., LEVI, R., GRAVER, L. M., ROBERTSON, D. A., AND GAY, W. A., JR.: Inotropic effects of histamine in human myocardium: differentiation between positive and negative components. J. Cardiovasc. Pharmacol. 6: 1210-1215, 1984.
- HAAS, H. L.: Electrophysiology of histamine receptors. In The Histamine Receptor: Receptor Biochemistry and Methodology, ed. by J. C. Schwartz and H. L. Haas., vol. 16, pp. 161–177, Wiley-Liss, New York, 1992.
- HAAS, H. L.: Histamine hyperpolarizes hippocampal neurones in vitro. Neurosci. Lett. 22: 75–78, 1981.
- HAAS, H. L., AND BUCHER, U. M.: Histamine H₂-receptors on single central neurones. Nature 255: 634-635, 1975.
- HAAS, H. L., AND GREENE, R. W.: Effects of histamine on hippocampal pyramidal cells of the rat in vitro. Exp. Brain Res. 62: 123-130, 1986.
- HAAS, H. L., GREENE, R. W., HEIMRICH, B., AND XIE, X.: LUP in slices from human hippocampus. In Synaptic Plasticity in the Hippocampus, ed. by H. L. Haas and G. Buzsaki, pp. 77–80, Springer, Berlin, 1988.
- HAAS, H. L., AND KONNERTH, A.: Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature (Lond.) 302: 432–434, 1983.
- HAAS, H. L., AND WOLF, P.: Central actions of histamine, microelectrophoretic studies. Brain Res. 122: 269–279, 1977.
- HAAS, H. L., WOLF, P., AND NUSSBAUMER, J.-C.: Histamine: action on supraoptic and other hypothalamic neurones of the cat. Brain Res. 88: 166-170, 1975.
- HAAS, H. L., WOLF, P., PALACIOS, J. M., GARBARG, M., BARBIN, G., AND SCHWARTZ, J. C.: Hypersensitivity to histamine in the guinea pig brain: microiontophoretic and biochemical studies. Brain Res. 156: 275–291, 1978.
- HADFIELD, A. J., ROBINSON, N. R., AND HILL, S. J.: The nature of the binding of ³H-mepyramine to homogenates of guinea-pig cerebral cortex at different ³H-ligand concentrations. Biochem. Pharmacol. **32**: 2449–2451, 1983.
- HAGELÜKEN, A., GRÜNBAUM, L., KLINKER, J. F., NÜRNBERG, B., HARHAMMER, P., SCHULTZ, G., LESCHKE, C., SCHUNACK, W., AND SEIFERT, R.: Histamine receptor-dependent and/or receptor independent activation of guanine nucleotide binding proteins by histamine and γ-substituted histamine derivatives in human leukemia (HL-60) and human erythroleukemia (HEL) cells. Biochem. Pharmacol. **49**: 901–914, 1995.
- HALL, I. P., AND HILL, S. J.: β_2 -adrenoceptor stimulation inhibits histaminestimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br. J. Pharmacol. **95**: 1204–1212, 1988.
- HAMILTON, K. K., AND SIMS, P. J.: Changes in cytosolic Ca²⁺ associated with von Willebrand factor release in human endothelial cells exposed to histamine: study of microcarrier cell monolayers using the fluorescent probe indo-1. J. Clin. Invest. **79:** 600–608, 1987.
- HATTORI, Y., KIMURA, S., FUJII, S., AND KANNO, M.: Effects of mechanical performance and biochemical and electrical activity in the heart of monkeys (Mocaca fuscata). Eur. J. Pharmacol. **91**: 11–19, 1983.
- HATTORI, Y., AND LEVI, R.: Adenosine selectively attenuates $\rm H_{2^{-}}$ and beta-mediated cardiac responses to histamine and norepinephrine: an unmasking of $\rm H_{1^{-}}$ and alpha-mediated responses. J. Pharmacol. Exp. Ther. 231: 215–233, 1984.
- HATTORI, Y., NAKAYA, H., ENDOU, M., AND KANNO, M.: Inotropic, electrophysiological and biochemical responses in rabbit papillary muscles: evidence for co-existence of H₁- and H₂-receptors. J. Pharmacol. Exp. Ther. 253: 250– 256, 1990.
- HATTORI, Y., NAKAYA, H., TOHSE, N., AND KANNO, M.: Effects of Ca²⁺ channel antagonists and ryanodine on H₁-receptor mediated electromechanical response to histamine in guinea-pig left atria. Naunyn-Schmiedeberg's Arch. Pharmacol. **337**: 323–330, 1988a.
- HATTORI, Y., SAKUMA, I., AND KANNO, M.: Differential effects of histamine mediated H₁- and H₂-receptors on contractility, spontaneous rate and cyclic nucleotides in the rabbit heart. Eur. J. Pharmacol. 153: 221–229, 1988b.
- HEGSTRAND, L. R., KANOF, P. D., AND GREENGARD, P.: Histamine-sensitive adenylate cyclase in mammalian brain. Nature (Lond.) 260: 163–165, 1976.
- HESCHELER, J., TANG, M., JASTORFF, B., AND TRAUTWEIN, W.: On the mechanism of histamine induced enhancement of the cardiac Ca^{2+} current. Pflügers Arch. **410**: 23–29, 1987.
- HEW, R. W. S., HODGKINSON, C. R., AND HILL, S. J.: Characterization of histamine H₃-receptors in guinea pig ileum with H₃-selective ligands. Br. J. Pharmacol. 101: 621–624, 1990.
- HILL, S. J.: Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol. Rev. 42: 45–83, 1990.
- HILL, S. J.: Histamine receptors in the mammalian central nervous system: biochemical studies. Prog. Med. Chem. 24: 29-84, 1987.
- HILL, S. J., DAUM, P., AND YOUNG, J. M.: Affinities of histamine H₁-antagonists in guinea-pig brain: similarity of values determined from ³H-mepyramine binding and from inhibition of a functional response. J. Neurochem. **37**: 1357–1360, 1981.
- HILL, S. J., AND DONALDSON, J.: The H₁-receptor and inositol phospholipid hydrolysis. In The Histamine Receptor, ed. by J.-C. Schwartz and H. L. Haas, pp. 109–128, Wiley-Liss, New York, 1992.
- HILL, S. J., AND YOUNG, J. M.: Characterization of ³H-mepyramine binding to the longitudinal muscle of guinea-pig small intestine. Mol. Pharmacol. 19: 379-387, 1981.

- HILL, S. J., AND YOUNG, J. M.: Histamine H₁-receptors in the brain of the guinea-pig and the rat: differences in ligand binding properties and regional distribution. Br. J. Pharmacol. 68: 687–696, 1980.
- HILL, S. J., YOUNG, J. M., AND MARRIAN, D. M.: Specific binding of ³Hmepyramine to histamine H₁-receptors in intestinal smooth muscle. Nature (Lond.) **270:** 361–363, 1977.
- HIRSCHFELD, J., BUSCHAUER, A., ELZ., S., SCHUNACK, W., RUAT, M., TRAIFFORT, E., AND SCHWARTZ, J.-C.: Iodoaminopotentidine and related compounds: a new class of ligands with high affinity and selectivity for the histamine H₂ receptor. J. Med. Chem. **35**: 2231–2238, 1992.
- HOLLANDE, F., BALI, J-P., AND MAGOUS, R.: Autoregulation of histamine synthesis through H_3 receptors in isolated fundic mucosal cells. Am. J. Physiol. **265:** G1039–G1044, 1993.
- HORIO, Y., MORI, Y., HIGUCHI, I., FUJIMOTO, K., ITO, S., AND FUKUI, H.: Molecular cloning of the guinea-pig histamine H_1 -receptor gene. J. Biochem. 114: 408–414, 1993.
- HOWSON, W., PARSONS, M. E., RAVEL, P., AND SWAYNE, G. T. G.: Two novel and potent and selective histamine H_3 -receptor agonists. Bioorg. Med. Chem. Lett. **2:** 77–79, 1992.
- ICHINOSE, M., AND BARNES, P. J.: Histamine H_3 -receptors modulate nonadrenergic noncholinergic neural bronchoconstriction in guinea-pig in vivo. Eur. J. Pharmacol. **174**: 49–55, 1989.
- ICHINOSE, M., BELVISI, M. G., AND BARNES, P. J.: Histamine H_3 -receptors inhibit neurogenic microvascular leakage in airways. J. Appl. Physiol. 68: 21–25, 1990.
- ICHINOSE, M., STRETTON, C. D., SCHWARTZ, J.-C., AND BARNES, P. J.: Histamine H_3 -receptors inhibit cholinergic neurotransmission in guinea-pig airways. Br. J. Pharmacol. **97:** 13–15, 1989.
- IMAMURA, M., POLI, E., OMONIYI, A. T., AND LEVI, R.: Unmasking of activated histamine H_3 -receptors in myocardial ischemia: their role as regulators of exocytotic norepinephrine release. J. Pharmacol. Exp. Ther. **271**: 1259–1266, 1994.
- IMAMURA, M., SEYEDI, N., LANDER, H. M., AND LEVI, R.: Functional identification of histamine H_3 -receptors in the human heart. Circ. Res. **77:** 206–210, 1995.
- IMAMURA, M., SMITH, N. C. E., GARBARG, M., AND LEVI, R.: Histamine H_{3^-} receptor-mediated inhibition of calcitonin gene-related peptide release from cardiac C fibers: a regulatory negative feedback loop. Circ. Res. **78:** 863–869, 1996.
- INOVE, I., TANIUCHI, I., KITAMURA, D., JENKINS, N. A., GILBERT, D. J., COPEL-AND, N. G., AND WATANABE, T.: Characteristics of the mouse genomic histamine H₁-receptor gene. Genomics **36:** 178–181, 1996.
- INUI, J., AND IMAMURA, H.: Restoration by histamine of the calcium-dependent electrical and mechanical response in the guinea-pig papillary muscle partially depolarized by potassium. Naunyn-Schmiedeberg's Arch. Pharmacol. 294: 261–269, 1976.
- IREDALE, P. A., FUKUI, H., AND HILL, S. J.: High stable expression of the bovine histamine H₁-receptor coupled to [Ca²⁺]_i mobilization in Cho-K1 cells. Biochem. Biophys. Res. Commun. **195**: 1294–1300, 1993.
- ISHIKAWA, E., TOKI, A., MORIYAMA, T., MATSUOKA, Y., AIKAWA, T., AND SUDA, M. J.: Induction of histidine decarboxylase in tumor-bearing fat. Biochem. 68: 347-355, 1970.
- ISHIKAWA, S., AND SPERELAKIS, N.: A novel class (H₃) of histamine receptors on perivascular nerve terminals. Nature (Lond.) **327**: 158–160, 1987.
- ISON, R. B., FRANKS, F. M., AND SOH, K. S.: The binding of conformationally restricted antihistamines to histamine receptors. J. Pharm. Pharmacol. 25: 887–894, 1973.
- JAHN, K., HAAS, H. L., AND HATT, H.: Histamine activated currents in the olfactory bulb. Naunyn-Schmiedeberg's Arch. Pharmacol. 352: 386-393, 1995.
- JANOVSKY, J., REYMANN, K. G., AND HAAS, H. L.: pH-dependent enhancement of synaptic transmission by histamine in the mouse hippocampus. Eur. J. Neurosci. 7: 2017–2020, 1995.
- JANSEN, F. P., RADEMAKER, B., BAST, A., AND TIMMERMAN, H.: The first radiolabeled histamine H_3 receptor antagonist, [¹²⁵i]iodophenpropit: saturable and reversible binding to rat cortex membranes. Eur. J. Pharmacol. **217**: 203–205, 1992.
- JANSEN, F. P., WU, T. S., VOSS, H. P., STEINBUSCH, H. W. M., VOLLINGA, R. C., RADEMAKER, B., BAST, A., AND TIMMERMAN, H.: Characterization of the binding of the first selective radiolabeled histamine H₃-receptor antagonist, ¹²⁵I-iodophenpropit, to rat brain. Br. J. Pharmacol. **113**: 355–362, 1994.
- JENKINSON, D. H.: Heinz Schild's contribution to receptor classification. In Perspectives on Receptor Classification, Receptor Biochemistry and Methodology, ed. by J. W. Black, D. H. Jenkinson, and V. P. Gerskowitch, vol. 6, pp. 1–10, Wiley-Liss, New York, 1987.
- JOHNSON, C. L.: Histamine receptors and cyclic nucleotides. In Pharmacology of Histamine Receptors, ed. by R. Ganellin and M. Parsons, pp. 146–216, Wright, Bristol, England, 1982.
- JOHNSON, C. L., WEINSTEIN, H., AND GREEN, J. P.: Studies on histamine H_2 receptors coupled to cardiac adenylate cyclase: blockade by H_2 and H1 receptor antagonists. Mol. Pharmacol. **16:** 417–428, 1979a.
- JOHNSON, C. L., WEINSTEIN, H., AND GREEN, J. P.: Studies on histamine H_2 receptors coupled to cardiac adenylate cyclase: effects of guanylnucleotides and structural requirements of agonist activity. Biochim. Biophys. Acta. **587**: 155–168, 1979b.

RFV

ARMACOLOGI

spet

- KAMBA, S., AND RICHELSON, E.: Antidepressants are weak competitive antagonists of histamine H₂-receptors in dissociated brain tissue. Eur. J. Pharmacol. 94: 313–318, 1983.
- KAMBA, S., AND RICHELSON, E.: Histamine H₁-receptors in human brain labelled with [³H] doxepin. Brain Res. 304: 1–7, 1984.
- KANOF, P. D., AND GREENGARD, P.: Brain histamine receptors as targets for antidepressant drugs. Nature (Lond.) 272: 329–333, 1978.
- KANOF, P. D., AND GREENGARD, P.: Pharmacological properties of histaminesensitive adenylate cyclase from guinea-pig cardiac ventricular muscle. Mol. Pharmacol. 15: 445-461, 1979a.
- KANOF, P. D., AND GREENGARD, P.: Pharmacological properties of histaminesensitive adenylate cyclase from mammalian brain. J. Pharmacol. Exp. Ther. 209: 87-96, 1979b.
- KANOF, P. D., HEGSTRAND, L. R., AND GREENGARD, P.: Biochemical characterization of histamine-sensitive adenylate cyclase in mammalian brain. Arch. Biochem. Biophys. 182: 321–334, 1977.
- KATHMAN, M., SCHLICKER, E., DETZNER, M., AND TIMMERMAN, H.: Nordimaprit, homodimaprit, clobenpropit and imetit: affinities for H₃ binding sites and potencies in a functional H₃ receptor model. Naunyn-Schmiedeberg's Arch. Pharmacol. **348**: 498–503, 1993.
- KELLER, M. B., GRUND, V. R., AND JOHNSON, C. L.: Impromidine stimulated adenylate cyclase activity in canine fat cell ghosts. (Abstract) Pharmacologist 23: 186, 1981.
- KENDALL, D. A., FERHANY, J. W., AND ENNA, S. J.: Properties of ³H-cimetidine binding in rat brain membrane fractions. Life Sci. 26: 1293–1302, 1980.
- KHAN, M. M., MARR-LEISY, D., VERLANDER, M. S., BRISTOW, M. R., STROBER, S., GOODMAN, M., AND MELMON, K. L.: The effects of derivatives of histamine on natural suppressor cells. J. Immunol. 137: 308–314, 1986.
- KHAN, M. M., SANSONI, P., ENGLEMAN, E. G., AND MELMON, K. L.: Pharmacological effects of autacoids on subsets of T cells: regulation of expression/ function of histamine-2 receptors by a subset of suppressor cells. J. Clin. Invest. 75: 1578-1583, 1985.
- KHATEB, A., SERAFIN, M., AND MUEHLETHALER, M.: Histamine excites pedunculopontine neurones in guinea pig brainstem slices. Neurosci. Lett. 112: 257–262, 1990.
- KILLACKEY, J. J. F., JOHNSTON, M. G., AND MOVAT, H. Z.: Increased permeability of microcarrier-cultured endothelial monolayers in response to histamine and thrombin. Am. J. Pathol. 122: 50–61, 1986.
- KILPATRICK, G. J., AND MICHEL, A. D.: Characterisation of the binding of the histamine H_3 -receptor agonist $[{}^{3}\text{H}](r)$ - α -methyhistamine to homogenates of rat and guinea-pig cortex. Agents Actions **33**: 69–75, 1991.
- KITAMURA, Y., ARIMA, T., KITAYAMA, Y., AND NOMURA, Y.: Regulation of [Ca²⁺]_i rise activated by doxepin-sensitive H₁-histamine receptors in jurkat cells, cloned human T lymphocytes. Gen. Pharmacol. 27: 289–291, 1996.
- KLEY, N.: Multiple regulation of proenkephalin gene expression by protein kinase C. J. Biol. Chem. 263: 2003-2008, 1988.
- KOBAYASHI, T., INOVE, I., JENKINS, N. A., GILBERT, D. J., COPELAND, N. G., AND WATANABE, T.: Cloning, RNA expression and chromosomal location of a mouse histamine H₂-receptor gene. Genomics **37**: 390–394, 1996.
- KÖRNER, M., BOUTHENET, M. L., GANELLIN, C. R., GARBARG, M., GROS, C., IFE, R. J., SALÈS, N., AND SCHWARTZ, J.-C.: [¹²⁵i]Iodobolpyramine, a highly selective probe for histamine H₁-receptors in guinea pig brain. Eur. J. Pharmacol. **120**: 151–160, 1986.
- KORTE, A., MYERS, J., SHIH, N. Y., EGAN, R. W., AND CLARK, M. A.: Characterization and tissue distribution of H_3 -receptors in guinea-pigs by N^{α}-methylhistamine. Biochem. Biophys. Res. Commun. **168**: 979–986, 1990.
- KOSTOPOULOS, G., PSARROPOULOU, C., AND HAAS, H. L.: Membrane properties, response to amines and to tetanic stimulation of hippocampal neurons in the genetically epileptic mutant mouse tottering. Exp. Brain Res. 72: 45–50, 1988.
- KOTLIKOFF, M. I., MURRAY, R. K., AND REYNOLDS, E. E.: Histamine-induced calcium release and phorbol antagonism in cultured airway smooth muscle cells. Am. J. Physiol. 253: C561–C566, 1987.
- KRAUSE, M., ROULEAU, A., STARK, H., LUGER, P., LIPP, R., GARBARG, M., SCHWARTZ, J.-C., AND SCHUNACK, W.: Synthesis, X-ray crystallography, and pharmacokinetics of novel azomethine prodrugs of (R)-α-methylhistamine: highly potent and selective histamine H₃ receptor agonists. J. Med. Chem. 38: 4070-4079, 1995.
- LADURON, P. M., JANSSEN, P. F. M., GOMMEREN, W., AND LEYSEN, J. E.: In vitro and in vivo binding characteristics of a new long-acting histamine H₁antagonist, astemizole. Mol. Pharmacol. 21: 294–300, 1982.
- LE CONIAT, M., TRAIFFORT, E., RUAT, M., ARRANG, J. M., AND BERGER, R.: Chromosomal localization of the human histamine H_1 -receptor gene. Hum. Genom. **94:** 186–188, 1994.
- LEIGHTON, H. J., BATZ, R. G., AND FINDLAY, J. W. A.: BW 825C: a potent antihistamine with low sedation potential. (Abstract) Pharmacologist 25: 163, 1983.
- LESCHKE, C., ELZ, S., GARBARG, M., AND SCHUNACK, W.: Synthesis and histamine H₁-receptor agonist activity of a series of 2-phenylhistamines, 2-heteroaryl histamines and analogues. J. Med. Chem. 38: 1287–1294, 1995.
- LETT-BROWN, M. A., AND LEONARD, E. J.: Histamine-induced inhibition of normal human basophil chemotaxis to C5a. J. Immunol. 118: 815–818, 1977.

- LEURS, R., BROZIUS, M. M., JANSEN, W., BAST, A., AND TIMMERMAN, H.: Histamine H₁-receptor mediated cyclic GMP production in guinea-pig lung tissue is an L-arginine-dependent process. Biochem. Pharmacol. 42: 271–277, 1991a.
- LEURS, R., BROZIUS, M. M., SMIT, M. J., BAST, A., AND TIMMERMAN, H.: Effects of histamine H_{1^-} , H_{2^-} and H_{3^-} receptor selective drugs on the mechanical activity of guinea-pig small and large intestine. Br. J. Pharmacol. **102**: 179–185, 1991b.
- LEURS, R., KATHMANN, M., VOLLINGA, R. C., MENGE, W. M. P. B., SCHLICKER, E., AND TIMMERMAN, H.: Histamine homologues discriminating between two functional H_3 receptor assays: evidence for H_3 receptor heterogeneity? J. Pharmacol. Exp. Ther. **276**: 1009–1015, 1996.
- LEURS, R., SMIT, M. J., MEEDER, R., TER LAAK, A. M., AND TIMMERMAN, H.: Lysine²⁰⁰ located in the fifth transmembrane domain of the histamine H₁-receptor interacts with histamine but not with all H₁ agonists. Biochem. Biophys. Res. Commun. **214**: 110–117, 1995a.
- LEURS, R., SMIT, M. J., MENGE, W. M. B. P., AND TIMMERMAN, H.: Pharmacological characterization of the human histamine H₂-receptor stably expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 112: 847-854, 1994b.
- LEURS, R., SMIT, M. J., TENSEN, C. P., TER LAAK, A. M., AND TIMMERMAN, H.: Site-directed mutagenesis of the histamine H₁-receptor reveals a selective interaction of asparagine²⁰⁷ with subclasses of H₁-receptor agonists. Biochem. Biophys. Res. Commun. **201**: 295–301, 1994a.
- LEURS, R., SMIT, M. J., AND TIMMERMAN, H.: Molecular pharmacological aspects of histamine receptors. Pharmacol. Ther. 66: 413-463, 1995b.
- LEURS, R., TRAIFFORT, E., ARRANG, J. M., TARDIRD-LACOMBE, J., RUAT, M., AND SCHWARTZ, J. C.: Guinea-pig histamine H₁ receptor: II—stable expression in Chinese hamster ovary cells reveals the interaction with three major signal transduction pathways. J. Neurochem. **62**: 519–527, 1994c.
- LEURS, R., TULP, M. T. M., MENGER, W. M. B. P., ADOLFS, M. J. P., ZUIDERVELD, O. P., AND TIMMERMAN, H.: Evaluation of the receptor selectivity of the H_3 receptor antagonists, iodophenpropit and thioperamide: an interaction with the 5-HT₃ receptor revealed. Br. J. Pharmacol. **116**: 2315–2321, 1995c.
- LEVI, R. C., AND ALLOATTI, G.: Histamine modulates calcium current in guineapig ventricular myocytes. J. Pharmacol. Exp. Ther. 246: 377–383, 1988.
- LEVI, R., OWEN, D. A. A., AND TRZECIAKOWSKI, J.: Action of histamine on the heart and vasculature. *In* Pharmacology of Histamine Receptors, ed. by R. Ganellin and M. Parsons, pp. 236–297, Wright, Bristol, England, 1982.
- LICHTENSTEIN, L. M., AND GILLESPIE, E.: The effect of the H₁- and H₂-antihistamines on "allergic" histamine release and its inhibition by histamine. J. Pharmacol. Exp. Ther. **192**: 441–450, 1975.
- LIGNEAU, X., GARBARG, M., VIZUETE, M. L., DIAZ, J., PURAND, K., STARK, H., SCHUNACK, W., AND SCHWARTZ, J. C.: ¹²⁵I-Iodoproxyfan, a new antagonist to label and visualize cerebal histamine H₃-receptors. J. Pharmacol. Exp. Ther. **271:** 452–459, 1994.
- LIN, T. M., EVANS, D. C., WARRICK, M. W., AND RUFFOLO, R. R.: Actions of nizatidine on the rat uterus, dog stomach and experimentally induced gastric lesions. J. Pharmacol. Exp. Ther. 239: 400-405, 1986.
- LIPP, R., ARRANG, J. M., GARBARG, M., LUGER, P., SCHWARTZ, J.-C., AND SCHUNACK, W.: Synthesis, absolute configuration, stereoselectivity, and receptor selectivity of (α R, β S)- α , β -dimethylhistamine: a novel highly potent histamine H_3 receptor agonist. J. Med. Chem. **35:** 4434–4441, 1992.
- LIU, Y. Q., HORIO, Y., MIZUGUCHI, H., FUJIMOTO, K., IMAMURA, I., ABE, Y., AND FUKUI, H.: Re-examination of ³H-mepyramine binding assay for histamine H₁-receptor using quinine. Biochem. Biophys. Res. Commun. **189**: 378–384, 1992.
- LIVETT, B. G., AND MARLEY, P. D.: Effects of opioid peptides and morphine on histamine-induced catecholamine secretion from cultured, bovine adrenal chromaffin cells. Br. J. Pharmacol. 89: 327–334, 1986.
- LOEW, E. R.: Pharmacology of antihistamine compounds. Physiol. Rev. 27: 542–573, 1947.
- MAAYANI, S., HOUGH, L. B., WEINSTEIN, H., AND GREEN, J. P.: Response of the histamine H₂-receptor in the brain to antidepressant drugs. *In* Typical and Atypical Antidepressants: Molecular Mechanisms, ed. by E. Costa and G. Racagni, pp. 133–167, Raven Press, New York, 1982.
- MAGISTRETTI, P. J., AND SCHORDERET, M.: Norepinephrine and histamine potentiate the increase in adenosine 3',5'-monophosphate elicited by vasoactive intestinal polypeptide in mouse cerebral cortical slices: mediation by α_1 -adrenergic and H₁-histaminergic receptors. J. Neurochem. **35:** 362–368, 1985.
- MAJNO, G., AND PALADE, G. E.: Studies on inflammation: I—the effect of histamine and serotonin on vascular permeability: an electron microscopy study. J. Biophys. Cytol. 11: 571–606, 1961.
- MAJNO, G., SHEA, S. M., AND LEVENTHAL, M.: Endothelium contraction induced by histamine-type mediators: an electron microscope study. J. Cell. Biol. 42: 647–652, 1968.
- MALINOWSKA, D. H., SACHS, G., AND CUPPOLETTI, J.: Gastric H⁺ secretion: histamine (cAMP-mediated) activation of protein phosphorylation. Biochim. Biophys. Acta 972: 95–109, 1988.
- MARLEY, P. D., THOMPSON, K. A., JACHNO, K., AND JOHNSTON, M. J.: Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells. Br. J. Pharmacol. 104: 839-846, 1991.
- MARSHALL, P. B.: Some chemical and physical properties associated with histamine antagonism. Br. J. Pharmacol. 10: 270–278, 1955.

REV

ARMACOLOGI

276

- MARTINEZ-MIR, M. I., POLLARD, H., MOREAU, J., ARRANG, J. M., RUAT, M., TRAIFFORT, E., SCHWARTZ, J.-C., AND PALACIOS, J. M.: Three histamine receptors $(H_1, H_2 \text{ and } H_3)$ visualized in the brain of human and non-human primates. Brain Res. 526: 322-327, 1990.
- MATSUBARA, T., MOSKOWITZ, M. A., AND HUANG, Z: UK 14,304, R(-)-α-methylhistamine, and Sms 201-995 block plasma protein leakage within dura mater by prejunctional mechanisms. Eur. J. Pharmacol. 225: 145-150, 1992.
- MATSUMOTO, J., KANAIDE, H., NISHIMURA, J., SHOGAKIUCHI, Y., KOBAYASHI, S., AND NAKAMURA, M.: Histamine activates H1-receptors to induce cytosolic free calcium transients in cultured vascular smooth muscle cells from rat aorta. Biochem. Biophys. Res. Commun. 135: 172-177, 1986.
- MCCORMICK, D. A., AND WILLIAMSON, A.: Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanism of histaminergic control of arousal. J. Neurosci. 11: 3188-3199, 1991.
- MCINTYRE, T. M., ZIMMERMAN, G. A., SATOH, K., AND PRESCOTT, S. M.: Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin and adenosine triphosphate. J. Clin. Invest. 76: 271–280, 1985.
- MEGSON, A. C., DICKENSON, J. M., TOWNSEND-NICHOLSON, A., AND HILL, S. J .: Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. Br. J. Pharmacol. 115: 1415-1424, 1995.
- MELMON, K. L., BOURNE, H. R., WEINSTEIN, Y., SHEARER, G. M., KRAM, J., AND BAUMINGER, S.: Hemolytic plaque formations by leukocytes in vitro. J. Clin. Invest. 53: 13-21, 1974.
- MELMON, K. L., AND KHAN, M. M.: Histamine and its lymphocyte-selective derivatives as immune modulators. Trends Pharmacol. Sci. 8: 437-441, 1987.
- MELMON, K. L., ROCKLIN, R. E., AND ROSENKRANZ, R. P.: Autacoids as modulators of the inflammatory and immune response. Am. J. Med. 71: 100-106, 1981.
- MENKVELD, G. J., AND TIMMERMAN, H.: Inhibition of electrically evoked contractions of guinea pig ileum preparations mediated by the histamine H_3 receptor. Eur. J. Pharmacol. 186: 343-347, 1990.
- MEYRICK, B., AND BRIGHAM, K. I.: Increased permeability associated with dilation of endothelial cell junctions caused by histamine in intimal explants from bovine pulmonary artery. Exp. Lung Res. 6: 11-25, 1983.8.
- MITSUHASHI, M., MITSUHASHI, T., AND PAYAN, D. G.: Multiple signalling pathways of histamine H_2 receptors: identification of an H_2 receptor dependent Ca^{2+} mobilization pathway in human HL-60 promyelocytic leukemia cells. J. Biol. Chem. 264: 18356-18362, 1989.
- MITSUHASHI, M., AND PAYAN, D. G.: Characterization of functional histamine H1-receptors on a cultured smooth muscle cell line. J. Cell Physiol. 134: 367-375, 1988.
- MOGUILEVSKY, N., VARSALONA, F., NOYER, M., GILLARD, M., GUILLAUME, J. P., GARCIA, L., SZPIRER, C., SZPIRER, J., AND BOLLEN, A.: Stable expression of human H₁-histamine-receptor cDNA in Chinese hamster ovary cells: pharmacological characterization of the protein, tissue distribution of messenger RNA and chromosomal localisation of the gene. Eur. J. Biochem. 224: 489-495, 1994.
- MOGUILEVSKY, N., VARSALONA, F., GUILLAUME, J. P., NOYER, M., GILLARD, M., DALIERS, J., HÉNICHART, J. P., AND BOLLEN, A.: Pharmacological and functional characterization of the wild-type and site-directed mutants of the human H1-histamine receptor stably expressed in CHO cells. J. Recept. Signal Transduction Res. 15: 91-102, 1995.
- MOLDERINGS, G. J., WEIBENBORN, G., SCHLICKER, E., LIKUNGU, J., AND GÖTH-ERT, M.: Inhibition of noradrenaline release from the sympathetic nerves of the human saphenous vein by presynaptic histamine H3-receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 346: 46-50, 1992.
- MOREL, N., HARDY, J. P., AND GODFRAIND, T .: Histamine-operated calcium channels in intestinal smooth muscle of the guinea-pig. Eur. J. Pharmacol. 135: 69-75, 1987.
- MÖRSDORF, P., ENGLER, H., SCHICKANEDER, H., BUSCHAUER, A., SCHUNACK, W., AND BAUMANN, G.: Cardiohistaminergics: new developments in histamine H₂-agonists. Drugs Future 15: 919–933, 1990.
- MUNIR, M., LU, L, WANG, Y. H., LUO, J., WOLFE, B. B., AND MCGONIGLE .: Pharmacological and immunological characterization of N-methyl-D-aspartate receptors in human NT2-N neurones. J. Pharmacol. Exp. Ther. 276: 819-828, 1996.
- MURIYAMA, T., KAJIYAMA, Y., AND NOMURA, Y.: Histamine-stimulated and GTP-binding protein-mediated phospholipase A2 activation in rabbit platelets. J. Biol. Chem. 265: 4290-4295, 1990.
- NEGULESCU, P. A., AND MACHEN, T. E.: Intracellular Ca regulation during secretagogue stimulation of the parietal cell. Am. J. Physiol. 254: C130-C140, 1988.
- NEWTON, M. V., HOUGH, L. B., AND AZIMITIA, E. C.: Histamine-sensitive adenylate cyclase in monkey brain. Brain Res. 239: 639-643, 1982.
- NICHOLSON, A. N., PASCOE, P. A., TURNER, C., GANELLIN, C. R., CASY, A. F., AND MERCER, A. D.: Sedation and histamine H₁-receptor antagonism: studies in man with the enantiomers of chlorpheniramine and dimethindene. Br. J. Pharmacol 104: 270-276 1991
- NIEMEGEERS, C. J. E., AWOUTERS, F. H. L., AND JANSSEN, P. A. J.: The in vivo pharmacological profile of histamine (H1) antagonists in the rat. Drug Dev. Res. 2: 559-566, 1982.
- NOBLE, E. P., BOMMER, M., LIEBISCH, D., AND HERZ, A.: H1-histaminergic

activation of catecholamine release by chromaffin cells, Biochem, Pharmacol 37: 221-228 1988

- NORRIS, D. B., GAJTKOWSKI, G. A., AND RISING, T. J.: Histamine H₂-binding studies in the guinea-pig brain. Agents Actions 14: 543-545, 1984.
- OHKUBO, T., AND SHIBATA, M.: ATP-sensitive K⁺ channels mediate regulation of substance P release via the prejunctional histamine H₃-receptor. Eur. J. Pharmacol. 277: 45-49, 1995.
- Ohta, K., Hayashi, H., Mizuguchi, H., Kagamiyama, H., Fujimoto, K., and FUKUI, H.: Site-directed mutagenesis of the histamine H₁-receptor: roles of aspartic acid¹⁰⁷, asparagine¹⁹⁸ and threonine¹⁹⁴. Biochem. Biophys. Res. Commun. 203: 1096–1101, 1994.
- OLIANAS, M., OLIVER, A. P., AND NEFF, N. H.: Correlation between histamineinduced neuronal excitability and activation of adenvlate cyclase in guineapig hippocampus. Neuropharmacology 23: 1071-1074, 1984.
- OTTOSSON A JANSEN I AND EDVINSSON L. Pharmacological characterization of histamine receptors in human temporal artery. Br. J. Clin. Pharmacol 27: 139-145 1989
- PALACIOS, J. M., GARBARG, M., BARBIN, G., AND SCHWARTZ, J.-C.: Pharmacological characterization of histamine receptors mediating the stimulation of cyclic AMP accumulation in slices from guinea-pig hippocampus. Mol. Pharmacol. 14: 971-982, 1978.
- PALACIOS, J. M., WAMSLEY, J. K., AND KUHAR, M. J.: The distribution of histamine H1-receptors in the rat brain: an autoradiographic study. Neuroscience 6: 15-37, 1981a.
- PALACIOS, J. M., WAMSLEY, J. K., AND KUHAR, M. J.: GABA benzodiazepine and histamine H₁-receptors in the guinea pig cerebellum: effects of kainic acid injections studied by autoradiographic methods. Brain Res. 214: 155-162, 1981b.
- PANETTIERI, R. A., MURRAY, R. K., DEPALO, L. R., YADVISH, P. A., AND KOT-LIKOFF, M. I.: A human airway smooth muscle cell line that retains physiological responsiveness, Am. J. Physiol. 256: C329-C335, 1989.
- PEAKMAN, M. C., AND HILL, S. J.: Endogenous expression of histamine H1receptors functionally coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP. Br. J. Pharmacol. 113: 1554-1560, 1994.
- PEROUTKA, S. J., AND SNYDER, S. H.: ³H-Mianserin: differential labelling of serotonin₂ and histamine₁ receptors in rat brain. J. Pharmacol. Exp. Ther. 216: 142-148, 1981.
- PHELAN, K. D., NAKAMURA, J., AND GALLAGHER, J. P.: Histamine depolarizes rat medial vestibular nucleus neurons recorded intracellularly in vitro. Neurosci. Lett. 109: 287–292, 1990.
- PLAUT, M., AND LICHTENSTEIN, L. M.: Histamine and immune responses. In The Pharmacology of Histamine Receptors, ed. by C. R. Ganellin and M. E. Parsons, pp. 392-435, Wright, Bristol, England, 1982.
- POLI, E., CORUZZI, G., AND BERTACCINI, G.: Histamine H₃ receptors regulate acetylcholine release from the guinea pig ileum myenteric plexus. Life Sci. 48: 63-68, 1991.
- POLLARD, H., MOREAU, J., ARRANG, J. M., AND SCHWARTZ, J. C.: A detailed autoradiographic mapping of histamine H_3 -receptors in rat brain. Neuroscience 52: 169-189, 1993
- REINER, P. B., AND KAMONDI, A.: Mechanism of antihistamine induced sedation in the human brain: H1-receptor activation reduces background leakage potassium current. Neuroscience 59: 579-588, 1994.
- REINHARDT, D., AND RITTER, E.: Hypothermia-induced potentiation of histamine H2-receptor-mediated relaxation and cyclic AMP increase in isolated mesenteric artery of the rabbit. Agents Actions 9: 9-14, 1979.
- REINHARDT, D., SCHMIDT, U., BRODDE, O. E., AND SCHÜMANN, H. J.: H1- and H2-receptor mediated response to histamine on contractility and cyclic AMP of atrial and papillary muscles from guinea-pig hearts. Agents Actions 7: 1 - 12, 1977
- REINHARDT, D., WAGNER, J., AND SCHÜMANN, H. J.: Differentiation of H1- and H₂-receptors mediating positive chrono- and inotropic responses to histamine on atrial preparations of the guinea-pig. Agents Actions 4: 217-221, 1974
- RESINK, T. J., GRIGORIAN, G. Y., MOLDABAEVA, A. K., DANILOV, S. M., AND BUHLER, F. R.: Histamine-induced phosphoinositide metabolism in cultured human umbilical vein endothelial cells: association with thromboxane and prostacyclin release. Biochem. Biophys. Res. Commun. 144: 438-446, 1987.
- ROBINSON, R. L.: Histamine-induced catecholamine secretion from the cat adrenal medulla is mediated primarily by the H₁-receptor. (Abstract) Fed. Proc. 41: 1060, 1982.
- ROSE, C., QUACH, T. T., LORENS, C., AND SCHWARTZ, J. C.: Relationship between occupation of cerebral H1-receptors and sedative properties of antihistamines. Arzneim.-Forsch. 32(suppl. 11): 1171-1173, 1982.
- ROTTER, A., AND FROSTHOLM, A.: Cerebellar histamine H₁-receptor distribution: an autoradiographic study of Purkinje cell degeneration, staggerer, weaver and reeler mutant mouse strains. Brain Res. Bull. 16: 205-214, 1986
- RUAT, M., BOUTHENET, M. L., SCHWARTZ, J. C., AND GANELLIN, C. R.: Histamine H1-receptor in heart: unique electrophoretic mobility and autoradiographic localization. J. Neurochem. 55: 379–385, 1990a.
- RUAT, M., KORNER, M., GARBARG, M., GROS, C., SCHWARTZ, J. C., TERTIUK, W., AND GANELLIN, C. R.: Characterization of histamine H_1 -receptor binding peptides in guinea-pig brain using [¹²⁵i]-iodoazidophenpyramine, an irreversible specific photoaffinity probe. Proc. Natl. Acad. Sci. USA 85: 2743-2747. 1988.

IUPHAR CLASSIFICATION OF HISTAMINE RECEPTORS

- RUAT, M., TRAIFFORT, E., ARRANG, J. M., LEURS, R., AND SCHWARTZ, J. C.: Cloning and tissue expression of a rat histamine H₂-receptor gene. Biochem. Biophys. Res. Commun. **179**: 1470–1478, 1991.
- RUAT, M., TRAIFFORT, E., BOUTHENET, M. L., SCHWARTZ, J. C., HIRSCHFELD, J., BUSCHAUER, A., AND SCHUNACK, W.: Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H₂ receptor using [¹²⁵i]-iodinated probes. Proc. Natl. Acad. Sci. USA 87: 1658–1662, 1990b.
- SANDERSON, E. M., IREDALE, P. A., AND HILL, S. J.: Role of Ca²⁺ ions in the stimulation of cAMP accumulation by histamine in CHO-K1 cells transfected with the bovine H₁-receptor. (Abstract) Br. J. Pharmacol. 117: 7P, 1996.
- SANSONI, P., SILVERMAN, E. D., KHAN, M. M., MELMON, K. L., AND ENGLEMAN, E. G.: Immunoregulatory T cells in man: histamine-induced suppressor T cells are derived from Leu 2+ (T+) subpopulation distinct from that which gives rise to cytotoxic T cells. J. Clin. Invest. 75: 650–656, 1985.
- SAXENA, S. P., BRANDES, L. J., BECKER, A. B., SIMONS, K. J., LABELLA, F. S., AND GERRARD, J. M.: Histamine is an intracellular messenger mediating platelet aggregation. Science 243: 1596–1599, 1989.
- SAYSBASILI, H., STEVENS, D. R., AND HAAS, H. L.: pH-dependent modulation of N-Methyl-D-Aspartate receptor-mediated synaptic currents by histamine in rat hippocampus in vitro. Neurosci. Lett. 199: 225–227, 1995.
- SCHLICKER, E., BEHLING, A., LUMMEN, G., MALINOWSKA, B., AND GÖTHERT, M.: Mutual interaction of histamine H_3 -receptors and α_2 -adrenoceptors on noradrenergic terminals in mouse and rat brain cortex. Naunyn-Schmiedeberg's Arch. Pharmacol. **345:** 639–646, 1992.
- SCHLICKER, E., BETZ, R., AND GÖTHERT, M.: Histamine H_3 -receptor-mediated inhibition of serotonin release in the rat brain cortex. Naunyn-Schmiedeberg's Arch. Pharmacol. **337:** 588–590, 1988.
- SCHLICKER, E., FINK, K., DETZNER, M., AND GÖTHERT, M.: Histamine inhibits dopamine release in the mouse striatum via presynaptic H_3 -receptors. J. Neural Transm. **93**: 1–10, 1993.
- SCHLICKER, E., FINK, K., HINTERHANER, M., AND GÖTHERT, M.: Inhibition of noradrenaline release in the rat brain cortex via presynaptic H_3 receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. **340**: 633–638, 1989.
- SCHLICKER, E., GLASER, T., LÜMMEN, G., NEISE, A., AND GÖTHERT, M.: Serotonin and histamine receptor-mediated inhibition of serotonin and noradrenaline release in rat brain cortex under nimodipine treatment. Neurochem. Int. 19: 437–444, 1991.
- SCHLICKER, E., KATHMAN, M., BITSCHNAU, H., MARR, I., REIDEMEISTER, S., STARK, H., AND SCHUNACK, W.: Potencies of antagonists chemically related to iodoproxyfan at histamine H_3 -receptors in mouse brain cortex and guinea-pig ileum: evidence for H_3 -receptor heterogeneity? Naunyn-Schmiedeberg's Arch. Pharmacol. **353**: 482–488, 1996.
- SCHLICKER, E., PERTZ, H., BITSCHNAU, H., PURAND, K., KATHMANN, M., ELZ, S., AND SCHUNACK, W.: Effects of iodoproxyfan, a potent and selective histamine H_3 receptor antagonist, on α_2 and 5-HT₃ receptors. Inflamm. Res. **44**: 296– 300, 1995.
- SCHMIDT, H. H. H. W., ZERNIKOW, B., BAEBLICH, S., AND BOHME, E.: Basal and stimulated formation and release of L-arginine-derived nitrogen oxides from cultured endothelial cells. J. Pharmacol. Exp. Ther. 254: 591-597, 1990.
- SCHWABE, U., OHGA, Y., AND DALY, J. W.: The role of calcium in the regulation of cyclic nucleotide levels in brain slices of rat and guinea-pig. Naunyn-Schmiedeberg's Arch. Pharmacol. **302:** 141–151, 1978.
- SCHWARTZ, J. Č., ARRANG, J. M., GARBARG, M., AND POLLARD, H.: A third histamine receptor subtype: characterisation, localisation and functions of the $\rm H_3$ -receptor. Agents Actions **30:** 13–23, 1990.
- SCHWARTZ, J. C., ARRANG, J. M., GARBARG, M., AND TRAIFFORT, E.: Histamine. In Psychopharmacology: The Fourth Generation of Progress, ed. by F. E. Bloom and D. J. Kupfer, pp. 397–405, Raven, New York, 1995.
- SCHWARTZ, J. C., ARRANG, J. M., GARBARG, M., POLLARD, H., AND RUAT, M.: Histaminergic transmission in the mammalian brain. Physiol. Rev. 71: 1-51, 1991.
- SCHWARTZ, J. C., GARBARG, M., AND QUACH, T. T.: Histamine receptors in brain, a target for tricyclic antidepressants. Trends Pharmacol. Sci. 2: 122-125, 1981.
- SCHWORER, H., REIMANN, A., RAMADORI, G., AND RACKÉ, K.: Characterization of histamine H₃-receptors inhibiting 5-HT release from porcine enterochromaffin cells: further evidence for H₃-receptor heterogeneity. Naunyn-Schmiedeberg's Arch. Pharmacol. **350**: 375–379, 1994.
- SEIFERT, R., HOER, A., SCHWANER, I., AND BUSCHAUER, A.: Histamine increases cytosolic Ca²⁺ in HL-60 promyelocytes predominantly via H₂ receptors with an unique agonist/antagonist profile and induces functional differentiation. Mol. Pharmacol. **42:** 235–241, 1992.
- SEIFERT, R., HAGELÜKEN, A., HOER, A., HOER, D., GRÜNBAUM, L., OFFERMANNS, S., SCHWANER, I., ZINGEL, V., SCHUNACK, W., AND SCHULTZ, G.: The H₁receptor agonist 2-(3-chlorophenyl) histamine activates G_i proteins in HL-60 cells through a mechanism that is independent of known histamine receptor subtypes. Mol. Pharmacol. 45: 578–586, 1994.
- SELLIER, C., ELZ, S., BUSCHAUER, A., AND SCHUNACK, W.: The effect of lipophilic substituents on the H₂-histaminergic activity of some close analogues of impromidine. Arch. Pharm. (Weinheim) **325:** 471–476, 1992.

SERTL, K., CASALE, T. B., WESCOTT, S. L., AND KALINER, M. A.: Immunohisto-

chemical localization of histamine-stimulated increases in cyclic GMP in guinea-pig lung. Am. Rev. Respir. Dis. **135**: 456–462, 1987.

- SHIH, N. Y., LUPO, A. T., ASLANIAN, R., ORLANDO, S., PIWINSKI, J. J., GREEN, M. J., GANGULY, A. K., CLARK, M. A., TOZZI, S., KREUTNER, W., AND HEY, J. A.: A novel pyrrolidine analogue of histamine as a potent, highly selective histamine H₃-receptor agonist. J. Med. Chem. **38**: 1593–1599, 1995.
- SMIT, M. J., LEURS, R., ALEVIJNSE, A. E., BLAUW, J., AMERONGEN, G. P. V., VANDERREDE, Y., ROOVERS, E., AND TIMMERMAN, H.: Inverse agonism of histamine H₂-antagonists accounts for up-regulation of spontaneously active histamine receptors. Proc. Natl. Acad. Sci. USA 93: 6802-6807, 1996a.
- SMIT, M. J., ROOVERS, E., TIMMERMAN, H., VANDEVREDE, Y., ALEWIJNSE, A. E., AND LEURS, R.: Two distinct pathways for histamine H_2 -receptor down-regulation. J. Biol. Chem. **271:** 7574–7582, 1996b.
- SMIT, M. J., TIMMERMAN, H., HIJZELENDOORN, J. C., FUKUI, H., AND LEURS, R.: Regulation of the human histamine H₁-receptor stably expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 117: 1071–1080, 1996c.
- SMITH, I. R., CLEVERLEY, M. T., GANELLIN, C. R., AND METTERS, K. M.: Binding of ³H-cimetidine to rat brain tissue. Agents Actions **10**: 422–426, 1980.
- SOLDANI, G., MENGOZZI, G., INTORRE, L., DE GIORGI, G., CORUZZI, G., AND BERTACCINI, G.: Histamine H_3 -receptor-mediated inhibition of gastric acid secretion in conscious dogs. Naunyn-Schmiedeberg's Arch. Pharmacol. **347**: 61–65, 1993.
- SOLL, A. H., AND BERGLINDH, T.: Physiology of isolated gastric glands and parietal cells: receptors and effectors regulating function. *In* Physiology of the Gastrointestinal Tract, 2nd ed., ed. by L. R. Johnson, pp. 883–909, Raven, New York, 1987.
- SOLL, A. H., AND WOLLIN, A.: Histamine and cyclic AMP in isolated canine parietal cells. Am. J. Physiol. 237: E444-E450, 1979.
- SPIKER, M. D., PALMER, G. C., AND MANIAN, A. A.: Action of neuroleptic agents on histamine-sensitive adenylate cyclase in rabbit cerebral cortex. Brain Res. 104: 401-406, 1976.
- STARK, H., PURAND, K., HÜLS, A., LIGNEAU, X., GARBARG, M., SCHWARTZ, J.-C., AND SCHUNACK, W.: [¹²⁵]iodoproxyfan and related compounds: a reversible radioligand and novel classes of antagonists with high affinity and selectivity for the histamine H_3 receptor. J. Med. Chem. **39:** 1220–1226, 1996a.
- STARK, H., PURAND, K., LIGNEAU, X., ROULEAU, A., ARRANG, J.-M., GARBARG, M., SCHWARTZ, J.-C., AND SCHUNACK, W.: Novel carbamates as potent histamine H_3 receptor antagonists with high in vitro and oral in vivo activity. J. Med. Chem. **39:** 1157–1163, 1996b.
- STARK, H., SCHLICKER, E., AND SCHUNACK, W.: Developments of histamine H_3 -receptor antagonists. Drugs Future **21:** 507–520, 1996c.
- STASZEWSKA-BARCZAK, J., AND VANE, J. R.: The release of catecholamines from the adrenal medulla by histamine. Br. J. Pharmacol. Chemother. 25: 728-742, 1965.
- STEINBERG, M. I., AND HOLLAND, D. R.: Separate receptors mediating the positive inotropic and chronotropic effect of histamine in guinea-pig atria. Eur. J. Pharmacol. 34: 95–104, 1975.
- STERK, G. J., VAN DER SCHAAR, M. W. G., RADEMAKER, B., AND TIMMERMAN, H.: Histamine H₂-receptor binding on guinea-pig cerebral cortex. Agents Actions 18: 231–234, 1986.
- SVENSJO, E., AND GREGA, G. J.: Evidence for endothelial cell-mediated regulation of macromolecular permeability by postcapillary venules. Fed. Proc. 45: 89–95, 1986.
- TAKEDA, M., TAKAGI, T., YASHIMA, Y., AND MAENO, H.: Effect of a new potent H₂-blocker, 3-[[[2-[(diaminoethylene)amino]-4-thiazolyl]methyl]thio]-N²-sulfamoly propionamidine (YM-11170) on gastric secretion, ulcer formation and weight of male accessory sex organs in rats. Arzneim.-Forsch. **32**: 734–737, 1982.
- TAKUWA, Y., TAKUWA, N., AND RASMUSSEN, H.: Measurement of cytoplasmic free Ca²⁺ concentration in bovine tracheal smooth muscle using aequorin. Am. J. Physiol. 253: C817-C827, 1987.
- TAMURA, K., PALMER, J. M., AND WOOD, J. D.: Presynaptic inhibition produced by histamine at nicotinic synapses in enteric ganglia. Neurosci. 25: 171–179, 1988.
- TAYLOR, J. E., AND RICHELSON, E.: High-affinity binding of [³H]doxepin to histamine H₁-receptors in rat brain: possible identification of a subclass of histamine H₁-receptors. Eur. J. Pharmacol. **78**: 279–285, 1982.
- TAYLOR, S. J., AND KILPATRICK, G. J.: Characterization of histamine- H_3 receptors controlling non-adrenergic non-cholinergic contractions of the guinea pig isolated ileum. Br. J. Pharmacol. **105**: 667–674, 1992.
- TER LAAK, A. M., DONNÉ-OP DEN KELDER, G. M., BAST, A., AND TIMMERMAN, H.: Is there a difference in the affinity of histamine H_1 -receptor antagonists for CNS and peripheral receptors? an in vitro study. Eur. J. Pharmacol. **232**, 199–205, 1993.
- TER LAAK, A. M., TSAI, R. S., DONNÉ-OP DEN KELDER, G. M., CARRUPT, P. A., TESTA, B., AND TIMMERMAN, H.: Lipophilicity and hydrogen bonding capacity of H₁-antihistaminic agents in relation to their central sedative side effects. Eur. J. Pharm. Sci. **2:** 373–384, 1994.
- TIMMERMAN, H.: Cloning of the H_1 histamine receptor. Trends Pharmacol. Sci. **13:** 6–7, 1992a.
- TIMMERMAN, H.: Factors involved in the incidence of central nervous system effects of H₁ blockers. In Therapeutic Index of Antihistamines, ed. by M. K. Church and J. P. Rhoux, pp. 19–31, Hogrefe and Huber, Lewiston, 1992b.
- TIMMERMAN, H.: Routes to histamine H₂ agonists. Quant. Struct.-Act. Relat. 11: 219–223, 1992c.

- TODA, N.: Endothelium-dependent relaxation induced by angiotensin II and histamine in isolated arteries of dog. Br. J. Pharmacol. 81: 301-307, 1984.
 TOLL, L., AND SNYDER, S. H.: Solubilization and characterization of histamine UL, and Solution and Characterization of histamine
- $\rm H_{1}$ receptors in brain. J. Biol. Chem. **257:** 13593–13601, 1982. TRAIFFORT, E., LEURS, R., ARRANG, J. M., TARDIVEL-LACOMBE, J., DIAZ, J., SCHWARTZ, J. C., AND RUAT, M.: Guinea-pig histamine H_1-receptor: I—gene cloning, characterization and tissue expression revealed by in situ hybridization. J. Neurochem. **62:** 507–518, 1994.
- TRAIFFORT, E., POLLARD, H., MOREAU, J., RUAT, M., SCHWARTZ, J. C., MAR-TINEZ-MIR, M. I., AND PALACIOS, J. M.: Pharmacological characterization and autoradiographic localization of histamine H₂-receptors in human brain identified with ¹²⁵I-iodoaminopotentidine. J. Neurochem. **59**: 290–299, 1992a.
- TRAIFFORT, E., RUAT, M., ARRANG, J. M., LEURS, R., PIOMELLI, D., AND SCHWARTZ, J. C.: Expression of a cloned rat histamine H_2 receptor mediating inhibition of arachidonate release and activation of cAMP accumulation. Proc. Natl. Acad. Sci. USA 89: 2649–2653, 1992b.
- TRAIFFORT, E., RUAT, M., AND SCHWARTZ, J. C.: Interactions of mianserin, amitriptyline and haloperidol with guinea-pig cerebral histamine H₂-receptors studied with ¹²⁵I-iodoamino-potentidine. Eur. J. Pharmacol. Mol. Pharmacol. Sect. **207**: 143–148, 1991.
- TRAIFFORT, E., VIZUETE, M. L., TADIVELLACOMBE, J., SOUILE, E., SCHWARTZ, J. C., AND RUAT, M.: The guinea-pig histamine H_2 receptor-gene cloning, tissue expression and chromosomal localization of its human counterpart. Biochem. Biophys. Res. Commun. **211**: 570–577, 1995.
- TRAN, V. T., LEBOVITZ, R., TOLL, L., AND SNYDER, S. H.: ³H-Doxepin interactions with histamine H₁-receptors and other sites in guinea-pig and rat brain homogenates. Eur. J. Pharmacol. **70**: 501–509, 1981.
- TREHERNE, J. M., AND YOUNG, J. M.: Digitonin-solubilised histamine H₁receptors bind to polyethylenimine-treated glass-fibre filters. J. Pharm. Pharmacol. 40: 730-733, 1988a.
- TREHERNE, J. M., AND YOUNG, J. M.: Temperature dependence of the kinetics of the binding of ³H-(+)-N-methyl-4-methyl diphenhydramine to the histamine H₁-receptor: comparison with the kinetics of. ³H-mepyramine. Br. J. Pharmacol. **94:** 811–822, 1988b.
- TRENDELENBURG, U.: The action of histamine and 5-hydroxytryptamine on isolated mammalian atria. J. Pharmacol. Exp. Ther. **130**: 450-460, 1960.
- TRZECIAKOWSKI, J. P.: Inhibition of guinea pig ileum contractions mediated by a class of histamine receptor resembling the H_3 subtype. J. Pharmacol. Exp. Ther. **243**: 874–880, 1987.
- TUONG, M. D. T., GARBARG, M., AND SCHWARTZ, J. C.: Pharmacological specificity of brain histamine H₂-receptors differs in intact cells and cell free preparations. Nature (Lond.) 287: 548-551, 1980.
- UZAN, A., AND LE FUR, G.: Are antihistamines sedative via a blockade of brain H₁-receptors? J. Pharm. Pharmacol. **31:** 701–702, 1979.
- VAN AMSTERDAM, R. G. M., MEURS, H., BROUVER, F., POSTEMA, J. B., TIMMER-MANS, A., AND ZAAGSMA, J.: Role of phosphoinositide metabolism in functional antagonism of airway smooth muscle contraction by β -adrenoceptor agonists. Eur. J. Pharmacol. Mol. Pharmacol. Sect. **172**: 175–183, 1989.
- VAN DE VOORDE, J., AND LEUSEN, I.: Role of the endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur. J. Pharmacol. **87:** 113–120, 1993.
- VAN DER GOOT, H., SCHEPERS, M. J. P., STERK, G. J., AND TIMMERMAN, H.: Isothiourea analogues of histamine as potent agonists or antagonists of the histamine H₃ receptor. Eur. J. Med. Chem. 27: 511–517, 1992.
- VAN DER WERF, J. F., AND TIMMERMAN, H.: The histamine H_3 -receptor: a general presynaptic histaminergic regulatory mechanism? Trends Pharmacol. Sci. **10**: 159–162, 1989.
- VILLEMAGNE, V. L., DANNALS, R. F., SANCHEZ-ROA, P. M., RAVERT, H. T., VAZQUEZ, S., WILSON, A. A., NATARAJAN, T. K., WONG, D. F., YANAI, K., AND WAGNER, H. N., JR.: Imaging histamine H₁ receptors in the living human brain with carbon-11-pyrilamine. J. Nucl. Med. **32**: 308–311, 1991.
- VILLEMAIN, F. M., BACH, J. F., AND CHATENOUD, L. M.: Characterization of histamine H₁ binding sites on human T lymphocytes by means of ¹²⁵Iiodobolpyramine. J. Immunol. **144**: 1449–1454, 1990.
- VOLLINGA, R. C., MENGE, W. M. P. B., LEURS, R., AND TIMMERMAN, H. H.: Homologs of histamine as histamine H_3 receptor antagonists: a new potent and selective H_3 antagonist, 4(5)-(5-aminopentyl)-1H-imidazole. J. Med. Chem. **38**: 266–271, 1995.
- VOLLINGA, R. J., DE KONING, J. P., JANSEN, F. P., LEURS, R., MENGE,

W. M. P. B., AND TIMMERMAN, H.: A new potent and selective histamine H_3 receptor agonist, immepip (VUF 4708). J. Med. Chem. **37:** 332–333, 1994.

- VOROBJEV, V. S., SHARONOVA, I. N., WALSH, I. B., AND HAAS, H. L.: Histamine potentiates N-methyl-D-aspartate responses in acutely isolated hippocampal neurones. Neuron 11: 837–844, 1993.
- WAN, D. C. C., MARLEY, P. D., AND LIVETT, B. G.: Histamine activates proenkephalin A mRNA but not phenylethanolamine-N-methyltransferase mRNA expression in cultured bovine adrenal chromaffin cells. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 172: 117-129, 1989.
- WARBANOW, W., AND WOLLENBERGER, A.: Mechanical responses of cultured pre- and neonatal myocytes. J. Mol. Cell Cardiol. 11(suppl. 1): 64, 1979.
- WARRENDER, S. E., NORRIS, D. B., RISING, T. J., AND WOOD, T. P.: ³H-cimetidine and the H₂-receptor. Life Sci. **33**: 1119–1126, 1983.
- WATANABE, T., TAGUSHI, Y., SASAKI, K., AND KITAMURA, Y.: Increase in histidine decarboxylase activity in mouse skin after application of the tumor promoter tetradecanoylphorbol acetate. Biochem. Biophys. Res. Commun. 100: 427-432, 1981.
- WEST, R. E., JR., ZWEIG, A., SHIH, N. Y., SIEGEL, M. I., EGAN, R. W., AND CLARK, M. A.: Identification of two H₃-histamine receptor subtypes. Mol. Pharmacol. 38: 610-613, 1990.
- WHITE, T. E., DICKENSON, J. M., AND HILL, S. J.: Histamine H₁-receptormediated inositol phospholipid hydrolysis in DDT₁ MF₂ cells: agonist and antagonist properties. Br. J. Pharmacol. **108**: 196–203, 1993.
- WIECH, N. L., AND MARTIN, J. S.: Absence of an effect of terfenadine on guinea-pig brain histamine H₁-receptors in vivo determined by receptor binding techniques. Arzneim.-Forsch. Drug Res. **32**(suppl. 11): 1167–1170, 1982.
- WILLIAMS, K.: Subunit-specific potentiation of recombinant N-methyl-D-aspartate receptors by histamine. Mol. Pharmacol. 46: 531–541, 1994.
- WINDAUS, A., AND VOGT, W.: Synthese des Imidazolyl-äthylamins. Ber. Dtsch. Chem. Ges. 40: 3691–3695, 1907.
- YAMASHITA, M., FUKUI, H., SUGAMA, K., HORIO, Y., ITO, S., MIZOGUCHI, H., AND WADA, H.: Expression cloning of a cDNA encoding the bovine histamine H₁ receptor. Proc. Natl. Acad. Sci., USA 88: 11515–11519, 1991a.
- YAMASHITA, M., ITO, S., SUGAMA, K., FUKUI, H., SMITH, B., NAKANISHI, K., AND WADA, H.: Biochemical characterization of histamine H₁-receptors in bovine adrenal medulla. Biochem. Biophys. Res. Commun. **177**: 1233-1239, 1991b.
- YANAI, K., RYU, J. H., SAKAI, N., ŤAKAHASHI, T., IWATA, R., IDO, T., MURAKAMI, K., AND WATANABE, T.: Binding characteristics of a histamine H₃-receptor antagonist, ³H-5-methylthioperamide: comparison with ³H-R-α-methylthistamine binding to rat tissues. Jpn. J. Pharmacol. **65**: 107–112, 1994.YANAI, K., RYU, J. H., WATANABE, T., IWATA, R., AND IDO, T.: Receptor autora-
- YANAI, K., RYU, J. H., WATANABE, T., IWATA, R., AND IDO, T.: Receptor autoradiography with ¹¹C and [³H]-labelled ligands visualized by imaging plates. Neuroreport 3: 961–964, 1992.
- YANAI, K., RYU, J. H., WATANABE, T., IWATA, R., IDO, T., SAWAI, Y., ITO, K., AND ITOH, M.: Histamine H₁-receptor occupancy in human brains after single oral doses of histamine H₁ antagonists measured by positron emission tomography. Br. J. Pharmacol. **116**: 1649–1655, 1995.
- YELLIN, T. O., BUCK, S. H., GILMAN, D. J., JONES, D. F., AND WARDLEWORTH, J. M.: ICI 125,211 a new gastric antisecretory agent acting on histamine H₂-receptors. Life Sci. 25: 2001–2009, 1979.
- YOUNG, C. S., MASON, R., AND HILL, S. J.: Studies on the mechanism of histamine-induced release of noradrenaline and 5-hydroxytryptamine from slices of rat cerebral cortex. Biochem. Pharmacol. 37: 2799-2805, 1988.
- YOUNG, R. C., MITCHELL, R. C., BROWN, T. H., GANELLIN, C. R., GRIFFITHS, R., JONES, M., RANA, K. K., SAUNDERS, D., SMITH, I. R., SORE, N. E., AND WILKS, T. J.: Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H₂ receptor histamine antagonists. J. Med. Chem. **31**: 656-671, 1988.
- YUAN, Y., GRANGER, H. J., ZAWIEJA, D. C., DEFILY, D. V., AND CHILIAN, W. M.: Histamine increases venular permeability via a phospholipase C-NO synthase-guanylate cyclase cascade. Am. J. Physiol. **264:** H1734–H1739, 1993.
- ZAVECZ, J. H., AND LEVI, R.: Histamine-induced negative inotropism: mediation by H₁-receptors. J. Pharmacol. Exp. Ther. **206**: 274-280, 1978.
- ZINGEL, V., ÉLZ, S., AND SCHUNACK, W.: Histamine analogues: 33rd communication—2-phenylhistamines with high histamine H₁-agonistic activity. Eur. J. Med. Chem. 25: 673–680, 1990.
- ZINGEL, V., LESCHKE, C., AND SCHUNACK, W.: Developments in histamine H₁-receptor agonists. Prog. Drug. Res. **44**: 49–85, 1995.
- ZWEIG, A., SIEGEL, M. I., EGAN, R. W., CLARK, M. A., SHORR, R. G. L., AND WEST, R. E.: Characterization of a digitonin-solubilised bovine brain H₃-histamine receptor coupled to a guanine nucleotide-binding protein. J. Neurochem. 59: 1661–1666, 1992.

ARMACOLOGI